Skip to main content

Isolation and cultivation of teleost hepatocytes

  • Chapter
The Hepatocyte Review

Abstract

After the original description by Berry and Friend in 1969 of the high yield isolation of rat liver parenchymal cells by collagenase perfusion [1], the use of isolated hepatocytes was soon established as an ideal system for the study of many aspects of hepatic metabolism [2]. In 1976, Birnbaum and colleagues [3] adapted the technique of hepatocyte isolation for studies of hormone-stimulated glycogenolysis in goldfish cells. Since then, isolated fish hepatocytes have been used intensively in fresh suspensions and in primary culture as a powerful, yet simple tool for the investigation of piscine hepatic functions. Cultured hepatocytes have proved to be well suited for applications not only in basic fish physiology, but also in the fields of pharmacology and environmental toxicology [4–7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry MN and Friend DS. High yield preparation of isolated rat liver parenchymal cells. J Cell Biol 1969; 43: 506–520.

    Article  PubMed  CAS  Google Scholar 

  2. Berry MN, Edwards AM and Barritt GJ. Isolated hepatocytes–preparation, properties and application. In: Burdon RH and van Knipfenberg PH, Eds. Laboratory techniques in biochemistry and molecular biology. Amsterdam: Elsevier 1991: 1–460.

    Google Scholar 

  3. Birnbaum MJ, Schultz J and Fain JN. Hormone-stimulated glycogenolysis in isolated goldfish hepatocytes. Am J Physiol 1976; 231: 191–197.

    PubMed  CAS  Google Scholar 

  4. Baksi SM and Frazier JM. Review. Isolated fish hepatocytes–model systems for toxicology research. Aquat Toxicol 1990; 16: 229–256.

    Article  CAS  Google Scholar 

  5. Mommsen TP, Moon TW and Walsh PJ. Hepatocytes: isolation, maintenance and utilization. In: Hochachka PW and Mommsen TP, Eds. Biochemistry and molecular biology of fishes. Vol. 3. Analytical techniques. Amsterdam: Elsevier, 1994: 355–372.

    Google Scholar 

  6. Segner H. Isolation and primary culture of teleost hepatocytes. Comp Biochem Physiol C 1999; in press.

    Google Scholar 

  7. Moon TW, Walsh PJ and Mommsen TP. Fish hepatocytes: a model metabolic system. Can J Fish Aquat Sci 1985; 42: 1772–1782.

    Article  CAS  Google Scholar 

  8. Klaunig JE. Establishment of fish hepatocyte cultures for use in in vitro carcinogenicity studies. Natl Cancer Inst Monogr 1984; 65: 163–173.

    PubMed  CAS  Google Scholar 

  9. Klaunig JE, Ruch RJ and Goldblatt JP. Trout hepatocyte culture: Isolation and primary culture. In Vitro Cell Dev Biol 1985; 21: 221–228.

    Article  CAS  Google Scholar 

  10. Braunbeck T. Cytological alterations in isolated hepatocytes from rainbow trout (Oncorhynchus mykiss) exposed to 4-chloroaniline. Aquat Toxicol 1993; 25: 83–110.

    Article  CAS  Google Scholar 

  11. O’Grady SM, Clarke A and De Vries AL. Characterization of glycoprotein antifreeze biosynthesis in isolated hepatocytes from Pagothenia borchegrevinki. J Exp Zool 1982; 220: 179–189.

    Article  PubMed  Google Scholar 

  12. Haschemeyer AEV and Mathews RW. Temperature dependency of protein synthesis in isolated hepatocytes of antarctic fish. Physiol Zool 1983; 56: 78–87.

    Google Scholar 

  13. Moerland TS and Sidell BD. Characterization of metabolic carbon flow in hepatocytes isolated from thermally acclimated killifish Fundulus heteroclitus. Physiol Zool 1981; 54: 379–389.

    CAS  Google Scholar 

  14. Schnurstein A, Leist E, Froschauer A et al. Activation of indirectly acting genotoxic substances in primary cell cultures of liver and gill cells from zebrafish (Brachydanio rerio). Verh Dtsch Zool Ges 1997; 90. 1: 384.

    Google Scholar 

  15. Seglen PO. Preparation of rat liver cells. I. Effects of Cat+ on enzymatic dispersion of isolated, perfused liver. Exp Cell Res 1972; 74: 450–454.

    Article  PubMed  CAS  Google Scholar 

  16. Seglen PO. Preparation of rat liver cells. III. Enzymatic requirements for tissue dispersion. Expl Cell Res 1973; 82: 391–398.

    Article  CAS  Google Scholar 

  17. Gagné F and Blaise C. Evaluation of the genotoxicity of environmental contaminants in sediments to rainbow trout hepatocytes. Environ Toxicol Water Qual 1995; 10: 217–229.

    Article  Google Scholar 

  18. Gagné F and Blaise C. Flow cytometry measurement of mixed function oxidase activity and cell viability in rainbow trout (Oncorhynchus mykiss) hepatocytes: method development. Environ Toxicol Water Qual 1996; 11: 53–63.

    Article  Google Scholar 

  19. Donohue M, Baldwin LA, Leonard DA, Kostecki PT and Calabrese EJ. Effect of hypolipidemic drugs gemfibrozil, ciprofibrate, and clofibric acid on peroxisomal (3-oxidation in primary cultures of rainbow trout hepatocytes. Ecotox Environ Safety 1993; 26: 127–132.

    Article  CAS  Google Scholar 

  20. Hazel JR and Sellner PA. Fatty acid and sterol synthesis by hepatocytes of thermally acclimated trout (Salmo gairdneri). J Exp Zool 1979; 209: 105–113.

    Article  PubMed  CAS  Google Scholar 

  21. Steward AR, Elmarakby SA, Stuart KG, Kumar S and Sikka HC. Metabolism of 2acetylaminofluorene by hepatocytes isolated from rainbow trout. Toxicol Appl Pharmacol 1995; 130: 188–196.

    Article  PubMed  CAS  Google Scholar 

  22. Duan C, Hanzawa N, Takeuchi Yet al. Use of primary cultures of salmon hepatocytes for the study of hormonal regulation of insulin-like growth factor I expression in vitro. Zool Sci 1993; 10: 473–480.

    CAS  Google Scholar 

  23. Parker RS, Morrissey MT, Moldeus P et al. The use of isolated hepatocytes from rainbow trout (Salmo gairdneri) in the metabolism of acetaminophen. Comp Biochem Physiol 1981; 70B: 631–633.

    Article  Google Scholar 

  24. Rabergh CMI, Ziegler K, Isomaa B, Lipsky MM and Eriksson JE. Uptake of taurocholic acid and cholic acid in isolated fish hepatocytes from rainbow trout. Am J Physiol 1994; 267: G380 - G386.

    PubMed  CAS  Google Scholar 

  25. Andersson T and Förlin L. Spectral properties of substrate-cytochrome P-450 interaction and catalytic activity of xenobiotic metabolizing enzymes in isolated rainbow trout liver cells. Biochem Pharmacol 1985; 34: 1407–1413.

    Article  PubMed  CAS  Google Scholar 

  26. Renaud JM and Moon TW. Characterization of gluconeogenesis in hepatocytes isolated from the American eel, Anguilla rostrata LeSueur. J Comp Physiol 1980; 135B: 115–125.

    CAS  Google Scholar 

  27. Renaud JM and Moon TW. Starvation and metabolism of hepatocytes isolated from the American eel, Anguilla rostrata LeSueur. J Comp Physiol 1980; 135B: 127–137.

    CAS  Google Scholar 

  28. Seglen PO. Preparation of isolated liver cells. Meth Cell Biol 1976; 13: 29–59.

    Article  CAS  Google Scholar 

  29. Braunbeck T and Storch V. Senescence of hepatocytes isolated from rainbow trout (Oncorhynchus mykiss) in primary culture: an ultrastructural study. Protoplasma 1992; 170: 138–159.

    Article  Google Scholar 

  30. Walsh PJ. Lactate uptake by toadfish hepatocytes: passive diffusion is sufficient. J Exp Biol 1987; 130: 295–304.

    CAS  Google Scholar 

  31. Porthé-Nibelle J and Lahlou B. Mechanisms of glucocorticoid uptake by isolated hepatocytes of the trout. Comp Biochem Physiol 1981; 69B: 425–433.

    Google Scholar 

  32. Williams EE and Hazel JR. Restructuring of plasma membrane phospholipids in isolated hepatocytes of rainbow trout during brief in vitro cold exposure. J Comp Physiol 1995; 164B: 600–608.

    CAS  Google Scholar 

  33. Nishimoto M, Yanagida GK, Stein JE, Baird WM and Varanasi U. The metabolism of benzo[a]pyrene by English sole (Parophrys vetulus): comparison between isolated hepatocytes in vitro and liver in vivo. Xenobiotica 1992; 22: 949–961.

    Article  PubMed  CAS  Google Scholar 

  34. Bianchini L, Fossat B, Porthe-Nibelle J, Ellory JC and Lahlou B. Effects of hyposmotic shock on ion fluxes in isolated trout hepatocytes. J Exp Biol 1988; 137: 303–318.

    PubMed  CAS  Google Scholar 

  35. Hazel JR. The incoporation of unsaturated fatty acids of the n-9, n-6 and n-3 families into individual phospholipids by isolated hepatocytes of thermally acclimated trout, Salmo gairdneri. J Exp Zool 1983; 227: 167–176.

    Article  PubMed  CAS  Google Scholar 

  36. Goeger DE, Shelton DW, Hendricks JD and Bailey GS. Mechanisms of anticarcinogenesis by indole-3-carbinol: effect on the distribution and metabolism of aflatoxin B1 in rainbow trout. Carcinogenesis 1986; 7: 2025–2031.

    Article  PubMed  CAS  Google Scholar 

  37. Coulombe RA, Bailey GS and Nixon JE. Comparative activation of aflatoxin B1 to mutagens by isolated hepatocytes from rainbow trout (Salmo gairdneri) and coho salmon (Oncorhynchus kisutch). Carcinogenesis 1984; 5: 29–33.

    Article  PubMed  CAS  Google Scholar 

  38. Bailey GS, Taylor MJ and Selivonchick DP. Aflatoxin BI metabolism and DNA binding in isolated hepatocytes from rainbow trout (Salmo gairdneri). Carcinogenesis 1982; 3: 511–518.

    Article  PubMed  CAS  Google Scholar 

  39. Jobling S and Sumpter JP. Detergent components in sewage effluent are weakly estrogenic to fish: an in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 1993; 27: 361–372.

    Article  CAS  Google Scholar 

  40. French CJ, Mommsen TP and Hochachka PW. Amino acid utilization in isolated hepatocytes from rainbow trout. Europ J Biochem 1981; 113: 311–317.

    Article  PubMed  CAS  Google Scholar 

  41. Koban M. Can cultured teleost hepatocytes show temperature acclimation? Am J Physiol 1986; 250: R211 - R220.

    PubMed  CAS  Google Scholar 

  42. Mommsen TP and Walsh PJ. Evolution of urea synthesis in vertebrates: the piscine connection. Science 1989; 243: 72–75.

    Article  PubMed  CAS  Google Scholar 

  43. Garrison JC and Haynes RC. Hormonal control of glucogenolysis and gluconeogenesis in isolated rat liver cells. J Biol Chem 1973; 248: 5333–5343.

    PubMed  CAS  Google Scholar 

  44. Segner H, Böhm R and Kloas W. Binding and bioactivity of insulin in primary cultures of carp (Cyprinus carpio) hepatocytes. Fish Physiol Biochem 1993; 11: 41 1420.

    Google Scholar 

  45. Baksi SM. A fish hepatocyte model for the investigation of the effects of trihalomethanes. Water chlorination: chemistry, environmental impact and health effects 1990;

    Google Scholar 

  46. Pesonen M and Andersson T. Fish primary hepatocyte cultures; an important model of xenobiotic metabolism and toxicity studies. Aquat Toxicol 1997; 39: 253–267.

    Article  Google Scholar 

  47. Kelly JJ and Maddock MB. In vitro induction of unscheduled DNA synthesis by genotoxic carcinogens in the hepatocytes of the toadfish (Opsanus tau). Arch Environ Contam Toxicol 1985; 14: 555–563.

    Google Scholar 

  48. Walsh PJ, Moon TW and Mommsen TP. Interactive effects of acute changes in temperature and pH on metabolism in hepatocytes from the sea raven Hemitripterus americanus. Physiol Zool 1985; 58: 727–735.

    CAS  Google Scholar 

  49. Rabergh CM, Kane AS, Reimschuessel R et al. Viability and induction of tyrosine aminotransferase in rainbow trout hepatocytes cultured on laminin and polylysine in serum-free medium. Meth Cell Sci 1995; 17: 207–215.

    Article  Google Scholar 

  50. Foster GD and Moon TW. Hormonal sensitivity and response in sea raven hepatocytes: changes with fasting and collagenase exposure. Can J Zool 1993; 71: 1755–1762.

    Article  CAS  Google Scholar 

  51. Braunbeck T. Cytological alterations in fish hepatocytes–in vivo and in vitro biomarkers of environmental contamination. In: Braunbeck T, Hinton DE and Streit B, Eds. Fish ecotoxicology. Experientia, Suppl. Ser. Birkhäuser, Basel, 1998: 61–140.

    Google Scholar 

  52. Puceat M, Garin D and Freminet A. Inhibitory effects of anaesthesia with 2phenoxyethanol as compared to MS 222 on glucose release in isolated hepatocytes from rainbow trout (Salmo gairdneri). Comp Biochem Physiol 1989; 94A: 221–224.

    Article  CAS  Google Scholar 

  53. Morrison H, Young P and George S. Conjugation of organic compounds in isolated hepatocytes from a marine fish, the plaice, Pleuronectes platessa. Biochem Pharmacol 1985; 34: 3933–3938.

    Article  PubMed  CAS  Google Scholar 

  54. Bouche G, Gas N and Paris H. Isolation of carp hepatocytes by centrifugation on a discontinuous ficoll gradient. A biochemical and ultrastructural study. Biol Cellul 1979; 36: 17–24.

    CAS  Google Scholar 

  55. Segner H, Scholz S and Böhm R. Carp (Cyprinus carpio) hepatocytes in primary culture: morphology and metabolism. Actes du Colloque (Ed l’IFREMER) 1995; 18: 77–82.

    Google Scholar 

  56. Baksi SM and Frazier JM. A fish hepatocyte model for the investigation of the effects of environmental contaminants. Mar Environ Res 1988; 243: 141–145.

    Article  Google Scholar 

  57. Seibert H. Viability control and oxygen consumption of isolated hepatocytes from thermally acclimated rainbow trout (Salmo gairdneri). Comp Biochem Physiol 1985; 80B: 677–683.

    CAS  Google Scholar 

  58. Dannevig BA and Berg T. Endocytosis of galactose-terminated glycoproteins by isolated liver cells of the rainbow trout (Salmo gairdneri). Comp Biochem Physiol 1985; 82B: 683–688.

    CAS  Google Scholar 

  59. Bhattacharya S, Plisetskaya E, Dickhoff WW and Gorbman A. The effects of estradiol and triiodothyronine on protein synthesis by hepatocytes of juvenile coho salmon (Oncorhynchus kisutch). Gen Comp Endocrin 1985; 57: 103–109.

    Article  CAS  Google Scholar 

  60. Plisetskaya EM, Fabbri E, Moon TW et al. Insulin binding to isolated hepatocytes of Atlantic salmon and rainbow trout. Fish Physiol Biochem 1993; 11: 401–409.

    Article  CAS  Google Scholar 

  61. Plisetskaya E, Bhattacharya S, Dickhoff WW et al. The effect of insulin on amino acid metabolism and glycogen content in isolated liver cells of juvenile coho salmon, Oncorhynchus kisutch. Comp Biochem Physiol 1984; 78A: 773–778.

    Article  CAS  Google Scholar 

  62. Deventer K. Detecting of genotoxic effects on cells of liver and gills of B. rerio by means of single cell gel electrophoresis. Bull Environ Contam Toxicol 1996; 56: 91 1918.

    Google Scholar 

  63. Foster GD, and Moon TW. Hypometabolism with fasting in the yellow perch (Perca flavescens): A study of enzymes, hepatocyte metabolism, and tissue size. Physiol Zool 1991; 64: 259–275.

    CAS  Google Scholar 

  64. Blair JB, Miller MR, Pack D, Barnes R, Teh SJ and Hinton DE. Isolated trout liver cells: establishing short-term primary cultures exhibiting cell-to-cell interactions. In Vitro Cell Dev Biol 1990; 26: 237–249.

    Article  CAS  Google Scholar 

  65. Hampton JA, Lantz RC and Hinton DE. Functional units in rainbow trout (Salmo gairdneri, Richardson) liver: III. Morphometric analysis of parenchyma, stroma, and component cell types. Am J Anat 1989; 185: 58–73.

    Article  PubMed  CAS  Google Scholar 

  66. Husoy AM, Myers MS, Willis ML, Collier TK, Celander M and Goksoyr A. Immunohistochemical localization of CYP1A and CYP3A-like isoenzymes in hepatic and extrahepatic tissues of Atlantic cod (Gadus morhua L.), a marine fish. Toxicol Appl Pharmacol 1994; 129: 294–308.

    Article  PubMed  CAS  Google Scholar 

  67. Blair JB, Ostrander GK, Miller MR and Hinton DE. Isolation and characterization of biliary epithelial cells from rainbow trout liver. In Vitro Cell Dev Biol 1995; 31: 780789.

    Google Scholar 

  68. Couch JA. Spongiosis hepatis: chemical induction, pathogenesis, and possible neoplastic fate in a teleost fish model. Toxicol Pathol 1991; 19: 237–250.

    Article  PubMed  CAS  Google Scholar 

  69. Skett P. Problems in using isolated and cultured hepatocytes for xenobiotic metabolism/metabolism-based toxicity testing–solutions? Toxicol in vitro 1994; 8: 491–504.

    Article  CAS  Google Scholar 

  70. Buhler R, Lindros KO, Nordling A, Johansson I and Ingelman-Sundberg M. Zonation of cytochrome P-450 isozyme expression and induction in rat liver. Eur J Biochem 1992; 204: 407–412.

    Article  PubMed  CAS  Google Scholar 

  71. Schaer M, Maly LP and Sasse D. Histochemical studies on metabolic zonation of the liver in the trout (Salmo gairdneri). Histochem 1985; 83: 147–151.

    Article  CAS  Google Scholar 

  72. Hampton JA, McCuskey PA, McCuskey RS and Hinton DE. Functional units in rainbow trout (Salmo gairdneri) liver: I. Arrangement and histochemical properties of hepatocytes. Anat Rec 1985; 213: 166–175.

    Article  PubMed  CAS  Google Scholar 

  73. Mommsen TP, Danulat E, Gavioli ME et al. Separation of enzymatically distinct populations of trout hepatocytes. Can J Zool 1991; 69: 420–426.

    Article  CAS  Google Scholar 

  74. Ottolenghi C, Ricci D, Gavioli ME et al. Separation of two populations of fish hepatocytes by digitonin infusion: some metabolic patterns and hormonal responsiveness. Can J Zool 1991; 69: 427–435.

    Article  CAS  Google Scholar 

  75. Segner H and Braunbeck T. Hepatocellular adaptation to extreme nutritional conditions in ide, Leuciscus idus melanotus L. (Cyprinidae). A morphofunctional analysis. Fish Physiol Biochem 1988; 5: 79–97.

    Article  CAS  Google Scholar 

  76. Mommsen TP and Walsh PJ. Metabolic and enzymatic heterogeneity in liver of the ureogenic teleost Opsanus beta. J Exp Biol 1991; 156: 407–418.

    PubMed  CAS  Google Scholar 

  77. Vogt G and Segner H. Spontaneous formation of intercellular bile canaliculi and hybrid biliary-pancreatic canaliculi in co-culture of hepatocytes and exocrine pancreas cells from carp. Cell Tissue Res 1997; 289: 191–194.

    Article  PubMed  CAS  Google Scholar 

  78. Patterson MK. Measurement of growth and viability of cells in culture. In: Jakoby WB and Pastan IH, Eds. Meth Enzymol 1979; 58: 141–152.

    Google Scholar 

  79. Tyson CA and Green CE. Cytotoxicity measures: choices and methods. In: Rauckman EJ and Padilla GM, Eds. The isolated hepatocyte: use in toxicology and xenobiotic biotransformations. Orlando: Academic Press, 1987: 119–158.

    Chapter  Google Scholar 

  80. Klaassen CD and Stacey NH. Use of isolated hepatocytes in toxicity assessment. In: Plaa G and Hewitt WR, Eds. Toxicology of the liver. New York: Raven Press, 1982: 147–179.

    Google Scholar 

  81. Zahn T and Braunbeck T. Cytologic evidence for malachite green toxicity in isolated rainbow trout (Oncorhynchus mykiss) hepatocytes. Toxicol In Vitro 1995; 9: 729–741.

    Article  CAS  Google Scholar 

  82. Zahn T, Arnold H and Braunbeck T. Cytological and biochemical response of R1 cells and isolated hepatocytes from rainbow trout (Oncorhynchus mykiss) to subacute in vitro exposure to disulfoton. Exp Toxicol Pathol 1996; 48: 47–64.

    Article  PubMed  CAS  Google Scholar 

  83. Zahn T, Hauck C, Holzschuh J and Braunbeck T. Acute and sublethal toxicity of seepage water from garbage dumps to permanent cell cultures and primary cultures of hepatocytes from rainbow trout (Oncorhynchus mykiss): a novel approach to environmental risk assessment. Zbl Hyg 1995; 196: 455–479.

    CAS  Google Scholar 

  84. Mommsen TP. Comparative gluconeogenesis in hepatocytes from salmonid fishes. Can J Zool 1986; 64: 1110–1115.

    Article  CAS  Google Scholar 

  85. Langer M. Histologische Untersuchungen an der Teleosteerleber. I. Der Aufbau des Leberparenchyms. Z mikr-anat Forsch 1979; 93: 829–848.

    PubMed  CAS  Google Scholar 

  86. Braunbeck T, Storch V and Nagel R. Sex-specific reaction of liver ultrastructure in zebrafish (Brachydanio rerio) after prolonged sublethal exposure to 4-nitrophenol. Aquat Toxicol 1989; 14: 185–202.

    Article  CAS  Google Scholar 

  87. Macartney AI, Tiku PE and Cossins AR. An isothermal induction of 89-desaturase in cultured carp hepatocytes. Biochim Biophys Acta 1996; 1302: 207–216.

    Article  PubMed  Google Scholar 

  88. Hayashi S and Ooshiro Z. Primary culture of eel hepatocytes in serum-free medium. Bull Jap Soc Sci Fish 1986; 52: 1641–1651.

    Article  Google Scholar 

  89. Andersson T and Koivusaari U. Influence of environmental temperature on the induction of xenobiotic metabolism by (3-naphthoflavone in rainbow trout, Salmo gairdneri. Toxicol Appl Pharmacol 1985; 80: 43–50.

    Article  CAS  Google Scholar 

  90. Islinger M, Pawlowski S, Hollert H et al. Measurement of vitellogenin-mRNA expression in primary cultures of rainbow trout hepatocytes in a non-radioactive dot blot/RNAse protection-assay. Sei Total Environ 1999; 233: 109–122.

    Article  CAS  Google Scholar 

  91. Vaillant C, Le Guellec C, Pakdel F and Valotaire Y. Vitellogenin gene expression in primary culture of male rainbow trout hepatocytes. Gen Comp Endocrinol 1988; 70: 284–290.

    Article  PubMed  CAS  Google Scholar 

  92. Peyon P, Baloche S, Burzawa and Gerard E. Synthesis of vitellogenin by eel (Anguilla anguilla L.) hepatocytes in primary culture: requirement of 17 3-estradiolpriming. Gen Comp Endocrinol 1993; 91: 318–329.

    Article  PubMed  CAS  Google Scholar 

  93. Pelissero C, Flouriot G, Foucher JL, Bennetau B, Dunogues J, Le Gac F and Sumpter JP. Vitellogenin synthesis in cultured hepatocytes; an in vitro test for the estrogenic potency of chemicals. J Steroid Biochem Mol Biol 1993; 44: 263–272.

    Article  PubMed  CAS  Google Scholar 

  94. Albers C. Acid-base balance. In: Hoar WS and Randall DJ, Eds. Fish physiology. New York: Academic Press, 1970: 173–213.

    Google Scholar 

  95. Mommsen TP and Suarez RK. Control of gluconeogenesis in rainbow trout hepatocytes: role of pyruvate branch point and phosphoenolpyruvate-pyruvate cycle. Mol Physiol 1984; 6: 9–18.

    CAS  Google Scholar 

  96. Sigel MM and Beasley AR. Trypsin C. Marine teleost tissues. In: Kruse PF and Patterson MD, Eds. Tissue culture methods and applications. New York: Academic Press, 1973: 12–14.

    Google Scholar 

  97. Baird WM, Smolarek TA, Plakunov I et al. Formation of benzo[a]pyrene-7,8dihydrodiol glucuronide is a major pathway of metabolism of benzo[a]pyrene in cell cultures from bluegill and brown bullhead. Symposium on Toxic Chemicals and Aquatic Life. Seattle: 1986.

    Google Scholar 

  98. Saez L, Goicoechea O, Amthauer R and Krauskopf M. Behaviour of RNA and protein synthesis during the acclimatization of the carp. Studies with isolated hepatocytes. Comp Biochem Physiol 1982; 72B: 31–38.

    CAS  Google Scholar 

  99. Lipsky MM, Sheridan TR, Bennett RO et al. Comparison of trout hepatocyte culture on different substrates. In Vitro Cell Dev Biol 1986; 22: 360–362.

    Article  Google Scholar 

  100. Kocal T, Crane TL, Quinn BA, Ferguson HW and Hayes MA. Degradation of extracellular thymidine by cultured hepatocytes from rainbow trout (Salmo gairdneri). Comp Biochem Physiol 1988; 91B: 557–561.

    Article  CAS  Google Scholar 

  101. Hayashi S and Ooshiro Z. Primary culture of the freshly isolated liver cells of the eel. Bull Jpn Soc Sci Fish 1985; 51: 765–771.

    Article  CAS  Google Scholar 

  102. Maitre JL, Valotaire Y and Guguen-Guillouzo C. Estradiol-1713 stimulation of vitellogenin synthesis in primary culture of male rainbow trout hepatocytes. In Vitro Cell Dev Biol 1986; 22: 337–343.

    Article  CAS  Google Scholar 

  103. Mommsen TP and Lazier CB. Stimulation of estrogen receptor accumulation by estradiol in primary cultures of salmon hepatocytes. FEBS Lett 1986; 195: 269–271.

    Article  PubMed  CAS  Google Scholar 

  104. Braunbeck T. Protracted senescence - a fundamental process of toxicity in isolated fish hepatocytes? Verh Dtsch Zool Ges 1997; 90. 1: 345.

    Google Scholar 

  105. Flouriot G, Pakdel F, Ducouret B and Valotaire Y. Influence of xenobiotics on rainbow trout liver estrogen receptor and vitellogenin gene expression. J Mol Endocrinol 1995; 15: 143–151.

    Article  PubMed  CAS  Google Scholar 

  106. Cravedi J-P, Paris A, Monod G et al. Maintenance of cytochrome P450 content and phase I and phase II enzyme activities in trout hepatocytes cultured as spheroidal aggregates. Comp Biochem Physiol 1996; 113C: 241–246.

    Google Scholar 

  107. Ottolenghi C, Puviani AC, Cooper GA et al. Perifusion of hepatocytes. In: Hochachka PW and Mommsen TP, Eds. Biochemistry and molecular biology of fishes. Vol. 3. Analytical techniques. Amsterdam: Elsevier, 1994: 387–397.

    Google Scholar 

  108. Vogt G, Böhm R and Segner H. Mimosine-induced cell death and related chromatin changes. J Submicroc Cytol Pathol 1994; 26: 319–330.

    CAS  Google Scholar 

  109. Braunbeck T. Strukturelle and funktionelle Veränderungen in Hepatocyten von Fischen als Biomarker für die Belastung durch Umweltchemikalien. Habilitation Thesis, Dept. of Zoology, University of Heidelberg, 1994.

    Google Scholar 

  110. Hauck C, Zahn T and Braunbeck T. Culture of liver-derived rainbow trout cells and their biotransformation capacity. Verh Dtsch Zool Ges 1993; 86: 190.

    Google Scholar 

  111. Braunbeck T, Hauck C, Scholz S et al. Mixed function oxygenases in cultured fish cells: contributions of in vitro studies to the understanding of MFO induction. Z Angew Zool 1996; 81: 55–72.

    Google Scholar 

  112. Nelson JS. Fishes of the world. New York: Wiley and Sons, 1994.

    Google Scholar 

  113. Ostrander GK, Blair JB, Stark BA et al. Long-term primary culture of epithelial cells from rainbow trout (Oncorhynchus mykiss) liver. In Vitro Cell Dev Biol Anim 1995; 31: 367–378.

    Article  CAS  Google Scholar 

  114. Scholz S, Oulmi Y, Braunbeck T et al. Viability and differential function of rainbow trout hepatocytes in primary culture: the influence of culture conditions. In Vitro Cell Dev Biol 1998; 34: 762–771.

    CAS  Google Scholar 

  115. Braunbeck T, Gorgas K, Storch V et al. Ultrastructure of hepatocytes in golden ide (Leuciscus idus melanotus L.; Cyprinidae: Teleostei) during thermal adaptation. Anat Embryol 1987; 175: 303–313.

    Article  PubMed  CAS  Google Scholar 

  116. Braunbeck T, Storch V and Bresch H. Species-specific reaction of liver ultrastructure of zebrafish (Brachydanio rerio) and trout (Salmo gairdneri) after prolonged exposure to 4-chloroaniline. Arch Environ Contam Toxicol 1990; 19: 405–418.

    Article  PubMed  CAS  Google Scholar 

  117. Segner H and Braunbeck T. Environmental adaptation of the cyprinid teleost Leuciscus idus melanotus: Changes in liver composition and structure during the winter season. J Exp Zool 1990; 255: 171–185.

    Article  Google Scholar 

  118. Singh Y, Cooke JB, Hinton DE et al. Trout liver slices for metabolism and toxicity studies. Drug Metab Dispos 1996; 24: 7–14.

    PubMed  CAS  Google Scholar 

  119. Braunbeck T. Protracted senescence - a fundamental process of toxicity in isolated fish hepatocytes? Cell Biol Toxicol 1996; 31.

    Google Scholar 

  120. Flouriot G, Vaillant G, Salbert G et al. Monolayer and aggregate cultures of rainbow trout hepatocytes: long-term and stable liver-specific expression in aggregates. J Cell Sci 1993; 105: 407–416.

    PubMed  CAS  Google Scholar 

  121. Kocal T, Quinn BA, Smith IR et al. Use of trout serum to prepare primary attached monolayer cultures of hepatocytes from rainbow trout (Salmo gairdneri). In Vitro Cell Dev Biol 1988; 24: 304–308.

    Article  Google Scholar 

  122. Hayashi S and Ooshiro Z. Preparation of isolated cells from eel liver. Bull Jpn Soc Sci Fish 1978; 44: 499–503.

    Article  CAS  Google Scholar 

  123. Campbell JW, Aster PL, Casey CA et al. Preparation and use of fish hepatocytes. In: Harris RA and Cornell NW, Eds. Isolation, characterization and use of hepatocytes. New York: Elsevier, 1983: 31–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael N. Berry Anthony M. Edwards

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Braunbeck, T., Segner, H. (2000). Isolation and cultivation of teleost hepatocytes. In: Berry, M.N., Edwards, A.M. (eds) The Hepatocyte Review. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3345-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3345-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5402-9

  • Online ISBN: 978-94-017-3345-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics