Skip to main content

Tumor-Derived Exosomes in Metastasis Signaling and Implications

  • Chapter
Intercellular Communication in Cancer

Abstract

Genome-wide studies for decoding molecular mechanisms of tumor cell-host interactions associated with cancer progression have revealed a determinant role for exosome-mediated intercellular communications in metastasis signaling. Exosomes are specialized plasma membrane-bound nanovesicles secreted under physiological conditions by various cells to regulate tissue homeostasis and immune response. In cancer, overproduction of exosomes and/or changes in their contents are common features of many cancer cell types and can bear unique molecular signatures reminiscent to the cancer phenotype. Exosomes mediate paracrine signaling required for cross-talks between tumor cells and the host stromal and infiltrating inflammatory and immune cells within the tumor tissue microenvironment as well as distant metastatic niches. Exosomes promote cancer invasiveness at multiple levels of the metastatic cascades favoring a permissive environment for cell survival and growth. This review focuses specifically on the implication of cancer-associated exosomes for cell signaling that promotes metastasis development. For detailed biochemical and molecular studies addressing exosome biology, we refer the reader to selected seminal studies in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Alix:

ALG-2-interacting protein X

c-Met:

Hepatocyte growth factor receptor

EGFR:

Epidermal growth factor receptor

FasL:

Fas ligand

HER-2:

Human epidermal growth factor receptor 2

HIF-1α:

Hypoxia-inducible factor 1-alpha

hnRNPA2B1:

Heterogeneous nuclear ribonucleo protein A2B1

ICAM1:

Intercellular adhesion molecule 1

LAMP:

Lysosome-associated membrane protein

LFA1:

Lymphocyte function-associated antigen 1

Mdh1:

Malate dehydrogenase 1

MDR1:

Multidrug resistance protein 1

MFGE8:

Milk fat globule-EGF factor 8 protein

MMP:

Matrix metallopeptidase

MVB:

Multivesicular bodies

PD-1:

Programmed cell death protein 1

Pgm1:

Phosphoglucomutase

PK:

Pyruvate kinases

TGF-β:

Transforming growth factor beta

TGF-βR:

Transforming growth factor beta receptor

TNFα:

Tumor necrosis factor-alpha

Tsg101:

Tumor susceptibility gene 101 protein

VEGF:

Vascular endothelial growth factor

VEGR:

Vascular endothelial growth factor receptor

References

  1. Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:445–452

    Article  CAS  PubMed  Google Scholar 

  2. Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nature Rev Mol Cell Biol 11:556–566

    Article  CAS  Google Scholar 

  3. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247. doi:10.1126/science.1153124

    Article  CAS  PubMed  Google Scholar 

  4. Denzer K, Kleijmeer MJ, Stoorvodel W, Heijnen HF, Geuze HJ (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113:3365–3374

    CAS  PubMed  Google Scholar 

  5. Record M, Subra C, Silvente-Poirot S, Poirot M (2011) Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 81:1171–1182

    Article  CAS  PubMed  Google Scholar 

  6. Simpson RJ, Jensen SS, Lim JW (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8(19):4083–4099. doi:10.1002/pmic.200800109

    Article  CAS  PubMed  Google Scholar 

  7. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30. doi:10.1038/ncb2000

    Article  CAS  PubMed  Google Scholar 

  8. Savina A, Fader CM, Damiani MT, Colombo MI (2005) Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6:131–143

    Article  CAS  PubMed  Google Scholar 

  9. Lebrand C, Corti M, Goodson H, Cosson P, CavalliV MN, Faure J, Gruenberg J (2002) Late endosome motility depends on lipids via the small GTPase Rab7. EMBO J 21:1289–1300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R, Valle M, Elortza F, Lu SC, Mato JM, Falcon-Perez JM (2008) Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res 7(12):5157–5166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Raposo G, Stoorvogel W (2013) Extracellular vesicles:exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  13. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21

    Article  CAS  PubMed  Google Scholar 

  14. Lehmann BD et al (2008) Senescence-associated exosome release from human prostate cancer cells. Cancer Res 68(19):7864–7871

    Article  CAS  PubMed  Google Scholar 

  15. Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lässer C, Alikhani VS, Ekström K et al (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9:9

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kogure T, Lin WL, Yan IK et al (2011) Intercellular nanovesicle-mediated microRNA transfer:a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54(4):1237–1248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Montecalvo A, Larregina AT, Shufesky WJ et al (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119(3):756–766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Simpson RJ, Kalra H, Mathivanan S (2012) ExoCarta as a resource for exosomal research. J Extracell Vesicles. doi:10.3402/jev.v1i0.18374

    PubMed Central  PubMed  Google Scholar 

  20. Paget S (1989) The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 8(2):98–101

    CAS  PubMed  Google Scholar 

  21. Bobrie A, Théry C (2013) Unraveling the physiological functions of exosome secretion by tumors. Oncoimmunology 2(1):e22565

    Article  PubMed Central  PubMed  Google Scholar 

  22. Koga K, Matsumoto K, Akiyoshi T, Kubo M, Yamanaka N, Tasaki A, Nakashima H, Nakamura M, Kuroki S, Tanaka M, Katano M (2005) Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res 25(6A):3703–3707

    CAS  PubMed  Google Scholar 

  23. Christianson HC, Svensson KJ, van Kuppevelt TH, Li J-P, Belting M (2013) Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A 110(43):17380–17385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  CAS  PubMed  Google Scholar 

  25. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. doi:10.1016/j.cell.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  26. Kalluri R1, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428. doi:10.1172/JCI39104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715. doi:10.1016/j.cell.2008.03.027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Chaffer CL1, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, D’Alessio AC, Young RA, Weinberg RA (2013) Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154(1):61–74. doi:10.1016/j.cell.2013.06.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Thiery JP, Lim CT (2013) Tumor dissemination: an EMT affair. Cancer Cell 23(3):272–273. doi:10.1016/j.ccr.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  30. Aga M, Bentz GL, Raffa S, Torrisi MR, Kondo S, Wakisaka N, Yoshizaki T, Pagano JS, Shackelford J (2014) Exosomal HIF1α supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene. doi:10.1038/onc.2014.66

    PubMed Central  PubMed  Google Scholar 

  31. Gu J, Qian H, Shen L, Zhang X, Zhu W, Huang L, Yan Y, Mao F, Zhao C, Shi Y, Xu W (2012) Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-β/Smad pathway. PLoS One 7(12), e52465. doi:10.1371/journal.pone.0052465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ramteke A, Ting H, Agarwal C, Mateen S, Somasagara R, Hussain A, Graner M, Frederick B, Agarwal R, Deep G (2013) Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog. doi:10.1002/mc.22124

    PubMed  Google Scholar 

  33. Jeppesen DK, Nawrocki A, Jensen SG, Thorsen K, Whitehead B, Howard KA, Dyrskjøt L, Ørntoft TF, Larsen MR, Ostenfeld MS (2014) Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors. Proteomics 14(6):699–712. doi:10.1002/pmic.201300452

    Article  CAS  PubMed  Google Scholar 

  34. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M, Wrana JL (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151(7):1542–1556. doi:10.1016/j.cell.2012.11.024

    Article  CAS  PubMed  Google Scholar 

  35. Mu W, Rana S, Zöller M (2013) Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia 15(8):875–887

    Article  PubMed Central  PubMed  Google Scholar 

  36. Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC, Tetta C, Bussolati B, Camussi G (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71(15):5346–5356. doi:10.1158/0008-5472.CAN-11-0241

    Article  CAS  PubMed  Google Scholar 

  37. Hood JL, San RS, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71(11):3792–3801

    Article  CAS  PubMed  Google Scholar 

  38. Webber J, Steadman R, Mason MD, Tabi Z, Clayton A (2010) Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70(23):9621–9630. doi:10.1158/0008-5472.CAN-10-1722, Epub 2010 Nov 23

    Article  CAS  PubMed  Google Scholar 

  39. Robbins PD (2014) Morelli AE regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14(3):195–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Ochoa AC, Zea AH, Hernandez C, Rodriguez PC (2007) Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 13(2 Pt 2):721s–726s

    Article  CAS  PubMed  Google Scholar 

  41. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau D, De Thonel A, Multhoff G, Hamman A, Martin F, Chauffert B, Solary E, Zitvogel L, Garrido C, Ryffel B, Borg C, Apetoh L, Rébé C, Ghiringhelli F (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120(2):457–471. doi:10.1172/JCI40483. Epub Jan 19

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Hong EH, Chang SY, Lee BR, Kim YS, Lee JM, Kang CY, Kweon MN, Ko HJ (2013) Blockade of Myd88 signaling induces antitumor effects by skewing the immunosuppressive function of myeloid-derived suppressor cells. J Cancer Educ 132(12):2839–2848. doi:10.1002/ijc.27974

    CAS  Google Scholar 

  43. Liu C, Yu S, Zinn K, Wang J, Zhang L, Jia Y, Kappes JC, Barnes S, Kimberly RP, Grizzle WE, Zhang HG (2006) Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J Immunol 176(3):1375–1385

    Article  CAS  PubMed  Google Scholar 

  44. Taylor DD, Gerçel-Taylor C, Lyons KS, Stanson J, Whiteside TL (2003) T-cell apoptosis and suppression of T-cell receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clin Cancer Res 9(14):5113–5119

    CAS  PubMed  Google Scholar 

  45. Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, Corbelli A, Fais S, Parmiani G, Rivoltini L (2006) Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66(18):9290–9298

    Article  CAS  PubMed  Google Scholar 

  46. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741. doi:10.1373/clinchem.2010.147405

    Article  CAS  PubMed  Google Scholar 

  47. Keller S, Ridinger J, Rupp AK, Janssen JW, Altevogt P (2011) Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 9:86. doi:10.1186/1479-5876-9-86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M, Sánchez-Madrid F (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980. doi:10.1038/ncomms3980

    Article  PubMed Central  PubMed  Google Scholar 

  49. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107(14):6328–6333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Pan Q, Ramakrishnaiah V, Henry S et al (2011) Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi). Gut 61(9):1330–1339. doi:10.1136/gutjnl-2011-300449

    Article  PubMed  Google Scholar 

  51. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X, Sun Q, Wang K, Ba Y, Wang Q, Wang D, Yang J, Liu P, Xu T, Yan Q, Zhang J, Zen K, Zhang CY (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39(1):133–144. doi:10.1016/j.molcel.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  52. Yang M, Chen J, Su F et al (2011) Microvesicles secreted by macrophages shuttle invasion potentiating microRNAs into breast cancer cells. Mol Cancer 10:117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Fabbri M, Paone A, Calore F, Galli R, Croce CM (2013) A new role for microRNAs, as ligands of Toll-like receptors. RNA Biol 10(2):169–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 8(6):883–891. doi:10.1038/nm.2753

    Article  Google Scholar 

  55. Li J, Sherman-Baust CA, Tsai-Turton M, Bristow RE, Roden RB, Morin PJ (2009) Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer. BMC Cancer 9:244. doi:10.1186/1471-2407-9-244

    Article  PubMed Central  PubMed  Google Scholar 

  56. Lu Q, Zhang J, Allison R, Gay H, Yang WX, Bhowmick NA, Frelix G, Shappell S, Chen YH (2009) Identification of extracellular delta-catenin accumulation for prostate cancer detection. Prostate 69(4):411–418. doi:10.1002/pros.20902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Morrissey JJ, London AN, Luo J, Kharasch ED (2010) Urinary biomarkers for the early diagnosis of kidney cancer. Mayo Clin Proc 85(5):413–421. doi:10.4065/mcp.2009.0709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Qu JL1, Qu XJ, Zhao MF, Teng YE, Zhang Y, Hou KZ, Jiang YH, Yang XH, Liu YP (2009) Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Dig Liver Dis 41(12):875–880. doi:10.1016/j.dld.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  59. Klinke DJ 2nd, Kulkarni YM, Wu Y, Byrne-Hoffman C (2014) Inferring alterations in cell-to-cell communication in HER2+ breast cancer using secretome profiling of three cell models. Biotechnol Bioeng. doi:10.1002/bit.25238

    PubMed Central  PubMed  Google Scholar 

  60. Ciravolo V, Huber V, Ghedini GC, Venturelli E, Bianchi F, Campiglio M, Morelli D, Villa A, Della Mina P, Menard S, Filipazzi P, Rivoltini L, Tagliabue E, Pupa SM (2012) Potential role f HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol 227(2):658–667. doi:10.1002/jcp.22773

    Article  CAS  PubMed  Google Scholar 

  61. Klein-Scory S, Kübler S, Diehl H, Eilert-Micus C, Reinacher-Schick A, Stühler K, Warscheid B, Meyer HE, Schmiegel W, Schwarte-Waldhoff I (2010) Immunoscreening of the extracellular proteome of colorectal cancer cells. BMC Cancer 10:70. doi:10.1186/1471-2407-10-70

    Article  PubMed Central  PubMed  Google Scholar 

  62. Schwarzenbach H, Nishida N, Calin GA, Pantel K (2014) Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 11(3):145–156

    Article  CAS  PubMed  Google Scholar 

  63. Marleau AM, Chen CS, Joyce JA, Tullis RH (2012) Exosome removal as a therapeutic adjuvant in cancer. J Transl Med 10:134. doi:10.1186/1479-5876-10-134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Grapp M, Wrede A, Schweizer M, Hüwel S, Galla HJ, Snaidero N, Simons M, Bückers J, Low PS, Urlaub H, Gärtner J, Steinfeld R (2013) Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. Nat Commun 4:2123. doi:10.1038/ncomms3123

    Article  PubMed  Google Scholar 

  65. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345. doi:10.1038/nbt.1807

    Article  CAS  PubMed  Google Scholar 

  66. Delcayre A, Estelles A, Sperinde J, Roulon T, Paz P, Aguilar B, Villanueva J, Khine S, Le Pecq JB (2005) Exosome display technology: applications to the development of new diagnostics and therapeutics. Blood Cells Mol Dis 35(2):158–168

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moulay A. Alaoui-Jamali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cao, Y.H., Bijian, K., Alkailani, M.I., Alaoui-Jamali, M.A. (2015). Tumor-Derived Exosomes in Metastasis Signaling and Implications. In: Kandouz, M. (eds) Intercellular Communication in Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7380-5_7

Download citation

Publish with us

Policies and ethics