Skip to main content

Dispersal of Vertebrates from Between the Americas, Antarctica, and Australia in the Late Cretaceous and Early Cenozoic

  • Chapter
  • First Online:
A Brief History of South American Metatherians

Abstract

The early Paleocene diversity of metatherians in Tiupampan faunas of South America and the pre-Tiupampan Paleocene polydolopimorphian Cocatherium speak in favor of an earliest Paleocene or Late Cretaceous dispersal of metatherians from North America. No Late Cretaceous metatherian or eutherian mammals have been recovered to date in South America, but the late Campanian to Maastrichtian hadrosaurine dinosaurs in Argentina, as well as the late Maastrichtian of the Antarctic Peninsula, is evidence of a biotic connection to North America. Placental ‘condylarths’ in the Tiupampan may have been related to, and dispersed southward relative to, Puercan taxa in North America and perhaps reflect a somewhat later event in comparison to metatherians. Other than hadrosaurine dinosaurs, Late Cretaceous vertebrates of South America are basically Gondwanan in affinities and reflect (and survived) the pre-106 Ma connection between South America, Africa, and Antarctica. The potential for a Late Cretaceous dispersal of metatherians would be compatible with a continued dispersal to Australia at that time, also supported by plate tectonic relationships, notwithstanding the basically endemic coeval Australian dinosaur fauna, and recognizing the essential absence of a Late Maastrichtian land vertebrate record there. An early Paleocene connection between at least Antarctica and South America is documented by the presence of a monotreme in the Peligran fauna of Patagonia. This, coupled with the fact that post-Peligran mammal faunas in South America and the Antarctic Peninsula (from at least 52 Ma in that location) are composed of derived metatherian as well as placental mammals, suggests that dispersal of metatherians to Australia had been achieved prior to the Eocene. Such timing is compatible with the still plesiomorphic level of Australian metatherians from the early Eocene Tingamarra fauna of Australia, the marine sundering of the Tasman Gate at about 50 Ma and the development of a continuously marine southern coastline of Australia from about 45 Ma effectively foreclosed overland mammal and other vertebrate dispersal to Australia thereafter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnolin FL, Chimento NR (2011) Afrotherian affinities for endemic South American “ungulates”. Mamm Biol 76:101–108

    Google Scholar 

  • Agnolin FL, Ezcurra MD, Pais DF, Salisbury SW (2010) A reappraisal of the Cretaceous non-avian dinosaur fauna from Australia and New Zealand: evidence for their Gondwanan affinities. J Syst Palaeontol 8(2):257–300

    Article  Google Scholar 

  • Amrine-Madsen H, Keopfli K-P, Wayne RK, Springer MS (2003) A new phylogenetic marker, apoliprotein B, provides compelling evidence for eutherian relationships. Mol Phylogenetics Evol 28:225–240

    Article  Google Scholar 

  • Andreis RR, Mazzoni MM, Spalletti LS (1975) Estudio estratigráfico y paleoambiental de las sedimentitas teriarias entre Pico Salamanca y Bahía Bustamante, Provincia de Chubut, República Argentina. Rev Asoc Geol Arg 30:85–103

    Google Scholar 

  • Archer M, Godthelp H, Hand S (1993) Early Eocene marsupial from Australia. Kaupia 3:193–200

    Google Scholar 

  • Asher R, Lehmann T (2008) Dental eruption in afrotherian mammals. BMC Biol 6:14. doi:10.1186/1741-7007-6-14

    Article  Google Scholar 

  • Asher RJ, Novacek MJ, Geisler JH (2003) Relationships of endemic African mammals and their fossil relatives based on morphological and molecular evidence. J Mamm Evol 10:131–194

    Article  Google Scholar 

  • Beck RMD (2012) An ‘ameridelphian’ marsupial from the early Eocene of Australia supports a complex model of Southern Hemisphere marsupial biogeography. Naturwissenschaften 99:715–729

    Article  Google Scholar 

  • Beck RMD (2013) A peculiar faunivorous metatherian from the early Eocene of Australia. Acta Palaeontol Pol. doi:http://dx.doi.org/10.4202/app.2013.0011

  • Beck RMD, Godthelp H, Weisbecker V, Archer M, Hand SJ (2008) Australia’s oldest marsupial fossils and their biogeographical implications. PLoS One 3:e1858. doi:10.137

    Google Scholar 

  • Bergqvist LP, Powell JE, Avilla LS (2004) A new xenungulate from the Río Loro Formation (Paleocene) from Tucumán province (Argentina). Ameghiniana Supl 41(4):36R

    Google Scholar 

  • Bernecker T, Partridge AD (2001) Emperor and golden beach subgroups: the onset of late cretaceous sedimentation in the gippsland basin, SE Australia. PESA Eastern Australasian Basins symposium, pp 391–402

    Google Scholar 

  • Bertini RJ, Marshall LG, Brito P (1993) Vertebrate faunas from the Adamantina and Marilia formations (Upper Bauru Group, late Cretaceous, Brazil) in their stratigraphic and paleobiogeographic context. N Jb Geol Paläont Abh 188(1):71–101

    Google Scholar 

  • Bijl PK, Schouten S, Sluijs A, Reichart G-J, Zachos JC, Brinkhuis H (2009) Early Paleogene temperature evolution of the southwest Pacific Ocean. Nature 461:776–779

    Article  Google Scholar 

  • Bijl PK, Bendie JAP, Bohaty SM, Pross J, Schouten S, Tauxe L, Stickley CE, McKay RM, Röhl U, Olney M, Sluijs A, Escutia C, Brinkhuis H, Expedition 318 Scientists (2013) Eocene cooling linked to early flow across the Tasmanian Gateway. PNAS Early Ed. doi:10.1073/pnas.1220872110

    Google Scholar 

  • Bininda-Emonds ORP, Cardillo J, Jones KE, MacPhee RDE, Beck RMD, Greyner F et al (2007) The delayed rise of present-day mammals. Nature 446:507–512

    Article  Google Scholar 

  • Birkenmajer K, Gaździcki A, Krajweski KP, Przybycin A, Solecki A, Tatur A, Yoon HI (2005) First Cenozoic glaciers in West Antarctica. Polish Polar Res 26(1):3–12

    Google Scholar 

  • Black KH, Archer M, Hand S, Godthelp H (2012) The rise of Australian marsupials: a synopsis of biostratigraphic, phylogenetic, palaeoecologic and palaeobiogeographic understanding. In: Talent JA (ed) Earth and life, international year of planet earth. doi 10.1007/978-481-3429-1_35

    Google Scholar 

  • Blevin JE, Trig KR, Partridge AD, Boreham CJ, Lang SC (2005) Tectonostratigraphy and potential source rocks of the Bass Basin. APPEA J 45:601–621

    Google Scholar 

  • Bohaty SM, Zachos JC (2003) Significant Southern Ocean warming event in the late middle Eocene. Geology 31:1017–1020

    Article  Google Scholar 

  • Bonaparte JF (1987) The Late Cretaceous fauna of Los Alamitos, Patagonia, Argentina. Rev Mus Arg Cs Nat “B. Rivadavia” Paleont 3(3):103–178

    Google Scholar 

  • Bond M, Kramarz A, MacPhee RDE, Reguero MA (2011) A new astrapothere (Mammalia, Meridungulata) from La Meseta Formation, Seymour (Marambio) Island, and a reassessment of previous records of Antarctic species. Amer Mus Novitates 3718:1–16

    Article  Google Scholar 

  • Candeiro CRA, Rich T (2010) Overview of the Late Cretaceous biota of the western São Paulo State, Brazil, Bauru Group. J South Amer Earth Sci 29:346–353

    Article  Google Scholar 

  • Candeiro CRA, Abranches CT, Abrantes EA, Avilla LS, Martins VC, Moreira AL, Torres SR, Bergqvist LP (2004) Dinosaurs remains from western São Paulo state, Brazil (Baru Basin, Adamantina Formation, Upper Cretaceous. J South Amer Earth Sci 18:1–10

    Article  Google Scholar 

  • Candeiro CRA, Martinelli AG, Avila LS, Rich TH (2006) Tetrapods from the upper Cretaceous (Turonian—Maastrichtian Baru group of Brazil: a reappraisal. Cretac Res 27:923–946

    Article  Google Scholar 

  • Candeiro CRA, Santos AR, Bergqvist LP, Ribeiro LCB, Apestgeuía S (2008) The Late Cretaceous fauna and flora of the Uberaba area (Minas Gerais State, Brazil). J South Amer Earth Sci 25:203–216

    Article  Google Scholar 

  • Carpenter RJ, Jordan GJ, Macphail MK, Hill RS (2012) Near-tropical early Eocene terrestrial temperatures at the Australo-Antarctic margin, western Tasmania. Geology 40(3):267–270

    Article  Google Scholar 

  • Case JA, Martin JE, Chaney DS, Reguero M, Marenssi SA, Santillana SM, Woodburne MO (2000) The first duck-billed dinosaur (Family Hadrosauridae) from Antarctica. J Vert Paleontol 20(3):612–614

    Article  Google Scholar 

  • Case JA, Goin FJ, Woodburne MO (2005) “South American” marsupials from the Late Cretaceous of North America and the origin of marsupial cohorts. J Mamm Evol 12(3/4):461–494

    Article  Google Scholar 

  • Case JA, Martin JE, Reguero M (2007) A dromaeosaur from the Maastrichtian of James Ross Island and the Late Cretaceous Antarctic dinosaur fauna. US Geol Surv Nat Acad USGS OF-2007-1047, Short Res Paper 083. doi:10.3133/of2007-1047.srp083

  • Chornogubsky L, Goin FJ, Reguero M (2009) A reassessment of Antarctic polydolopid marsupials (Middle Eocene, La Meseta Formation). Antarct Sci 21(3):285–297

    Article  Google Scholar 

  • Churakov G, Kriegs JO, Baertsch R, Zemann A, Brosius J, Schmitz J (2009) Mosaic retroposon insertion patterns in placental mammals. Genome Res 19:868–875

    Article  Google Scholar 

  • Clyde WC, Wilf P, Iglesias A, Slingerland RL, Barnum T, Bijl PK, Bralower TJ, Brinkhuis H, Comer EE, Huber BT, Ibañez-Mejia M, Jicha BR, Krause JM, Schueth JD, Singer BS, Raigemborn MS, Schmitz MD, Sluijs A, Zamaloa M del C (2014) New age constraints for the Salamanca Formation and lower Rio Chico Group in the western San Jorge Basin, Patagonia, Argentina: implications for K/Pg extinction recovery and land mammal age correlations. Geol Soc Amer Bull 126(3/4):289–306

    Google Scholar 

  • Crawford A, Smith EN (2005) Cenozoic biogeography and evolution in direct-developing frogs of Central America (Leptodactylidae: Eleuterodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes. Mol Phylogenetics Evol 35:536–555

    Article  Google Scholar 

  • Cummings AM, Hillis RR, Tingate PR (2004) New perspectives on the structural evolution of the Bass Basin: implications for petroleum prospectivity. In: PESA Eastern Australasian Symposium II, pp 133–149

    Google Scholar 

  • de la Fuente M, Salgado L, Albino A, Báez AM, Bonaparte JF, Calvo JO, Chiappe LM, Codorniú LS, Coria RA, Gasparini Z, González Riga BJ, Novas FE, Pol D (2007) Tetrápodos continentales del Cretácico de la Argentina: una síntesis actualizada. Asoc Paleont Arg Publ Esp 11:137–153

    Google Scholar 

  • de Muizon C (1991) La fauna de mamiferos de Tiupampa (Paleoceno inferior, Formación Santa Lucia), Bolivia. In: Suarez-Soruco R (ed) Fósiles y Facies de Bolivia, vol 1 (Vertebrados). Rev Tecn YPFB 3/4:575–624

    Google Scholar 

  • de Muizon C (1998) Mayulestes ferox, a borhyaenoid (Metatheria, Mammalia) from the early Paleocene of Bolivia. Phylogenetic and paleobiologic implications. Geodiversitas 20(1):19–142

    Google Scholar 

  • de Muizon C, Brito IM (1993) Le bassin calciaire de Sáo José de Itaboraí (Rio de Janeiro, Brésil): ses relacions fauniques avec le site de Tiupampa (Cochambamba, Bolivie). Annal Palaeontol 79:233–269

    Google Scholar 

  • de Muizon C, Cifelli RL (2000) The ‘condylarths’ (archaic Ungulata, Mammalia) from the early Palaeocene Tiupampa (Bolivia): implications on the origin of the South American ungulates. Geodiversitas 22(1):47–150

    Google Scholar 

  • dos Reis M, Inoue J, Haseqawa M, Asher RJ, Donoghue PCJ, Yang Z (2012) Phylogenetic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc R Soc B 279(1742):3491–3500

    Article  Google Scholar 

  • Elzanowski A, Boles WE (2012) Australia’s oldest anseriform fossil: a quadrate from the early Eocene Tingamarra Local Fauna. Palaeontology 55(4):903–911

    Article  Google Scholar 

  • Exon NF, Kennett JP, Malone MJ (2004) 1 Leg 189 synthesis: Cretaceous—Holocene history of the Tasmanian Gateway. In: Exon NF, Kennett JP, Malone MJ (eds) Proceeding of the ocean drilling program, scientific results, vol 189, pp 1–37

    Google Scholar 

  • Figueirido B, Janis CM, De Renzi M, Palmqvist P (2012) Cenozoic climate change influences mammalian evolutionary dynamics. PNAS 109(3):722–727

    Article  Google Scholar 

  • Forasiepi AM (2009) Osteology of Arctodictis sinclairi (Mammalia, Metatheria, Sparassodonta) and phylogeny of Cenozoic metatherian carnivores from South America. Monogr Mus Arg Cs Nat NS 6:1–174

    Google Scholar 

  • Francis JE, Ashworth A, Cantrill DJ, Crame JA, Howe J, Stephens R, Tosolini A-M, Thorn V (2008) 100 million years of Antarctic climate evolution: evidence from fossil plants. In: Cooper AK, Barrett PJ, Stagg H, Storey B, Stump E (eds) Antarctica: a keystone in a changing world, W Wise and the 10th ISAES editorial team. Proceedings of the 10 international symposium Antarctic Earth Sciences. The National Academies Press, Washington

    Google Scholar 

  • Gaffney ES, Bartholomai A (1979) Fossil trionychids from Australia. J Palaeontol 53(6):1354–1360

    Google Scholar 

  • Gayet M, Marshall LG, Sempere T, Meunier FJ, Cappetta H, Rage J-C (2001) Middle Maastrichtian vertebrates (fishes, amphibians, dinosaurs and other reptiles, mammals) from Pajcha Pata (Bolivia). Biostratigraphic, palaeoecologic and palaeobiogeographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 169:39–68

    Article  Google Scholar 

  • Gelfo JN, Goin FJ, Woodburne MO, de Muizon C (2009) Biochronological relationships of the earliest South American Paleogene mammalian faunas. Palaeontology 52(1):251–269

    Article  Google Scholar 

  • Gheerbrant E (2009) Paleocene emergence of elephant relatives and the rapid radiation of African ungulates. PNAS 106(26):10717–10721

    Article  Google Scholar 

  • Godthelp H, Archer M, Cifelli R, Hand S, Gilkeson CF (1992) Earliest known Australian Tertiary mammal fauna. Nature 356:514–516

    Article  Google Scholar 

  • Godthelp H, Wroe S, Archer M (1999) A new marsupial from the Early Eocene Tingamarra Local Fauna of Murgon, southeastern Queensland: a prototypical Australian marsupial? J Mamm Evol 6:289–313

    Article  Google Scholar 

  • Goin FJ, Abello MA (2013) Los Metatheria sudamericanos de comienzos del Neógeno (Mioceno temprano, Edad-mamífero Colhuehuapense). Parte 2: Microbiotheria y Polydolopimorphia. Ameghiniana 50(1):51–78

    Article  Google Scholar 

  • Goin FJ, Pascual R, Tejedor M, Gelfo JN, Woodburne MO, Case JA, Reguero MA, Bond M, López GM, Cione AL, Sauthier DU, Ballarino L, Scasso RA, Medina FA, Ubaldón MC (2006) The earliest Tertiary therian mammal from South America. J Vert Paleontol 26(2):505–510

    Article  Google Scholar 

  • Goin FJ, Candela AM, Abello A, Oliveira EO (2009) Earliest South American paucituberculatans and their significance in understanding of “pseudodiprotodont” marsupial radiations. Zool J Linn Soc 155:867–884

    Article  Google Scholar 

  • Goin FJ, Abello MA, Chornogubsky L (2010) Middle Tertiary marsupials from central Patagonia (early Oligocene of Gran Barranca): understanding South America’s Grand Coupure. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca. Cambridge University Press, Cambridge

    Google Scholar 

  • Goin FJ, Gelfo JN, Chornogubsky L, Woodburne MO, Martin T (2012a) Origins, radiations, and distribution of South American mammals: from greenhouse to icehouse worlds. In: Patterson BD, Costa LP (eds) Bones, clones, and biomes: an 80-million year history of recent Neotropical mammals. University of Chicago Press, Chicago

    Google Scholar 

  • Goin FJ, Tejedor MF, Chornogubsky L, López GM, Gelfo JN, Bond M, Woodburne MO, Gurovich Y, Reguero M (2012b) Persistence of a Mesozoic, non-therian mammalian lineage (Gondwanatheria) in the mid-Paleogene of Patagonia. Naturwissenschaften 99:449–463

    Article  Google Scholar 

  • Goin FJ, Zimicz N, Forasiepi AM, Chornogubsky LC, Abello MA (2013) The rise and fall of South American metatherians: contexts, adaptations, radiations, and extinctions. In: Rosenberger AL, Tejedor MF (eds) Origins and evolution of Cenozoic South American mammals. Springer, New York

    Google Scholar 

  • Gurovich Y, Beck R (2009) The phylogenetic affinities of the enigmatic mammalian clade Gondwanatheria. J Mamm Evol 16:25–49

    Article  Google Scholar 

  • Hahn G, Hahn R (2003) New multituberculate teeth from the Early Cretaceous of Morocco. Acta Palaeontol Pol 48:349–356

    Google Scholar 

  • Hahn G, Hahn R (2006) Evolutionary tendencies and systematic arrangement in the Haramyida (Mammalia). Geol Palaeontol 40:173–193

    Google Scholar 

  • Hallström BM, Kullberg M, Nilsson MA, Janke A (2007) Phylogenomic data analyses provide evidence that Xenarthra and Afrotheria are sister groups. Mol Biol Evol 24(9):2059–2068

    Article  Google Scholar 

  • Hand S, Novacek M, Godthelp H, Archer M (1994) First Eocene bat from Australia. J Vert Paleontol 14(3):375–381

    Article  Google Scholar 

  • Heinicke MP, Duellman WE, Hedges SB (2007) Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. PNAS 104(24):10092–10097

    Article  Google Scholar 

  • Herrera F, Manchester SR, Hoot SB, Wefferling KM, Carvalho MR, Jaramillo C (2011) Phytogeographic implications of fossil endocarps of Menispermaceae from the Paleocene of Colombia. Amer J Bot 98(12):2004–2017

    Article  Google Scholar 

  • Hill PJ, Exon NF (2004) Tectonics and basin development of the offshore Tasmania area incorporating the results from deep ocean drilling. The Cenozoic Southern Ocean: tectonics, sedimentation and climate change between Australia and Antarctica. Amer Geophys Union, Geophysical Monogr Ser 151:19–42

    Google Scholar 

  • Hofford SP, Hillis RR, Duddy IR, Green PF, Stoker MS, Tuitt AK, Backé G, Tassone DR, MacDonald JD (2011) Cenozoic post-breakup compressional deformation and exhumation of the southern Australian margin. APPEA J 51:618–638

    Google Scholar 

  • Hollis CJ, Handley L, Crouch EM, Morgans HEG, Baker JA, Creech J, Collins KS, Gibbs SJ, Huber M, Schouten S, Zachos JC, Pancost RD (2009) Tropical sea temperatures in the high-latitude South Pacific. Geology 37:99–110

    Article  Google Scholar 

  • Horovitz I, Martin T, Bloch J, Ladevèze S, Kurz C, Sánchez-Villagra M (2009) Cranial anatomy of the earliest marsupials and the origin of opossums. PLoS ONE 4(12):e8278. doi:10.1371/journal.pone.0008278

    Google Scholar 

  • Iglesias A, Wilf P, Johnson KR, Zamuner AB, Cuńeo NR, Matheos SD (2007) A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogs. Geology 35(10):947–950

    Article  Google Scholar 

  • Ivany LC, Lohmann KC, Hasiuk F, Blake DB, Glass A, Aronson RB, Moody RM (2008) Eocene climate record of a high southern latitude continental shelf: Seymour Island. Antarctica Geol Soc Amer Bull 120(5/6):659–678

    Article  Google Scholar 

  • Jacobs LL, Strganac C, Scotese C (2011) Plate motions, Gondwana dinosaurs, Noah’s arks, beached Viking funeral ships, Ghost ships, and landspans. An Acad Bras Cs 83(1):3–22

    Article  Google Scholar 

  • Juárez Valieri RD, Haro JA, Fiorelli LE, Calvo JO (2010) A new hadrosaurid (Dinosauria: Ornithopoda) from the Allen Formation (Late Cretaceous) of Patagonia, Argentina. Rev Mus Arg Cs Nat NS 12(2):217–231

    Article  Google Scholar 

  • Kielan-Jaworowska Z, Ortiz-Jaureguizar E, Vieytes C, Pascual R, Goin FJ (2007) First ?cimolodontan multituberculate mammal from South America. Acta Palaeontol Pol 52(2):257–262

    Google Scholar 

  • Lawver LA, Gahagan LM, Dalziel IWD (2011) A different look at gateways: Drake Passage and Australia/Antarctica. In: Anderson JB, Wellner JS (eds) Tectonic, climate, and cryospheric evolution of the Antarctic Peninsula. The Amer Geophys Union Sp Publications, vol 63, pp 5–33

    Google Scholar 

  • Lawver LA, Dalziel IWE, Gahagan LM, Norton IO (2013) Intercontinental dispersal routes for South American land mammals: paleogeographic constraints. In: Rosenberger AL, Tejedor MF (eds) Origins and evolution of Cenozoic South American mammals. Springer, New York

    Google Scholar 

  • Leanza HA, Apesteguía S, Novas FE, de la Fuente MS (2004) Cretaceous terrestrial beds from the Neuquén Basin (Argentina) and their tetrapod assemblages. Cretac Res 25:61–87

    Article  Google Scholar 

  • López G, Gelfo JN, Bond M, Lorente M, Reguero MA (in press) Towards the origin of South American native ungulates and their Paleocene and Eocene diversity. In: Rosenberger AL, Tejedor MF (eds) Origins and evolution of Cenozoic South American mammals. Springer, New York

    Google Scholar 

  • Luterbacher HP, Ali JR, Brinkhuis H, Gradstein FM, Hooker JJ, Monechi S, Ogg JG, Powell J, Röhl U, Sanfilippo A, Schmitz B (2004) Paleogene. In: Gradstein F, Ogg J, Smith A (eds) A geologic time scale. Cambridge University Press, Cambridge

    Google Scholar 

  • Marshall LG, Hoffstetter R, Pascual R (1983) Mammals and stratigraphy: geochronology of the continental mammal-bearing Tertiary of South America. Palaeovertebrata Mem Extraord, 1–93

    Google Scholar 

  • Massabie AE (1995) Estratigrafía del límite Cretácico-Terciario de la región del Río Colorado, según el perfil de Casa de Piedra, provincia de La Pampa. 12 Congr Geol Arg 2 Congr Expl Hidrocarb Mendoza Actas 2:124–131

    Google Scholar 

  • McInerney FA, Wing SL (2011) The Paleocene-Eocene Thermal Maximum; a perturbation of carbon cycle, climate, and biosphere with implications for the future. Ann Rev Earth Planet Sci 39:489–516

    Article  Google Scholar 

  • McKenna MC, Bell SJ (2002) Classification of mammals above the species level. Columbia University Press, New York

    Google Scholar 

  • Megirian D, Prideaux GJ, Murray PF, Smit N (2010) An Australian land mammal age biochronological scheme. Paleobiology 36(4):658–671

    Article  Google Scholar 

  • Meredith RW, Janecka JE, Gatesy J (2011) Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334(521):521–524

    Google Scholar 

  • Murphy PR, Schwarzbock H, Cranfield LC, Withnall IW, Murray CG (1976) Geology of the Gympie 1:250,000 Sheet Area. Geol Surv Queensland Rep 96:1–157

    Google Scholar 

  • Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W (2007) Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17:413–421

    Article  Google Scholar 

  • Murphy BH, Farley KA, Zachos JC (2010) An extraterrestrial 3He-based timescale for the Paleocene-Eocene Thermal Maximum (PETM) from Walvis Ridge, IODP site 1266. Geochem Cosmochem Acta 74:5098–5108

    Article  Google Scholar 

  • Nilsson MA, Churakov G, Sommer M, Tran NV, Zemann A, Brosius J, Schmitz J (2010) Tracking marsupial evolution using archaic genomic retroposon insertions. PLoS Biol 8(7):1–9

    Article  Google Scholar 

  • Nishihara H, Maruyama S, Okada N (2009) Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals. PNAS 106(13):5235–5240

    Article  Google Scholar 

  • Norvik MS (2000) Plate tectonic reconstructions of Australia’s southern margins. Geosci Aust Rec 2005(07):1–107

    Google Scholar 

  • Norvik MS, Smith MA, Power MR (2001) The plate tectonic evolution of eastern Australia guided by the stratigraphy of the Gippsland Basin. In: PSEA Eastern Australasian Basins symposium, pp 15–23

    Google Scholar 

  • O’Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Gaillombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo Z-X, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AR (2013) The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339:662–667

    Article  Google Scholar 

  • Pascual R, Ortiz-Jaureguizar E (2007) The Gondwanan and South American episodes: two major and unrelated moments in the history of the South American mammals. J Mamm Evol 14:75–137

    Article  Google Scholar 

  • Pascual R, Ortega Hinojosa EJ, Gondar D, Tonni E (1965) Las edades del Cenozóico mamalifero de la Argentina, con especial atención a aquellas del territorio bonarense. Anales Comisión Invest Cient Buenos Aires 6:165–193

    Google Scholar 

  • Pascual R, Archer M, Ortiz-Jaureguizar E, Prado JL, Godthelp H, Hand SJ (1992) First discovery of monotremes in South America. Nature 356:704–705

    Article  Google Scholar 

  • Pascual R, Goin FJ, González P, Ardolino A, Puerta PF (2000) A highly derived docodont from the Patagonian Late Cretaceous: evolutionary implications for Gondwanan mammals. Geodiversitas 22(3):395–414

    Google Scholar 

  • Patterson B, Pascual R (1972) The fossil mammal fauna of South America. In: Keast AE, Erk FC, Glass B (eds) Evolution, mammals, and southern continents. State University New York Press, Albany

    Google Scholar 

  • Penkrot TA, Zack SP, Rose KD, Bloch DI (2008) Postcranial morphology of Apheliscus and Haplomylus (Condylarthra, Apheliscidae): evidence for a Paleocene Holarctic origin of Macroscelidea. In: Sargis EJ, Dagosto M (eds) Mammalian evolutionary morphology: a tribute to Frederick S. Szalay. Springer, New York

    Google Scholar 

  • Pindell JL, Kennan LJG (2001) Kinematic evolution of the Gulf of Mexico and the Caribbean. In: Fillon R (ed) Transactions, 21st Bob Perkins GCSSEPM research conference

    Google Scholar 

  • Pindell J, Kennan L (2009) Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. In the origin and evolution of the Caribbean Plate. Geol Soc London Sp Publ 328:1–55

    Google Scholar 

  • Poole I, Cantrill D, Utescher T (2005) A multi-proxy approach to determine Antarctic terrestrial palaeoclimate during the Late Cretaceous and Early Tertiary. Palaeogeogr Palaeoclimat Palaeoecol 222:95–121

    Article  Google Scholar 

  • Powell JE (1987) Hallazgo de un dinosaurio hadrosaurido (Ornithischia, Ornithopoda) en la Formación Allen (Cretácico Superior) de Salitral Moreno, Provincia de Río Negro, Argentina. Actas 10 Congr Geol Arg 3:149–152

    Google Scholar 

  • Pross J, Contreras L, Bijl PK, Greenwood DR, Bohaty SM, Schouten S, Bendle JA, Röhl U. Tauxe L, Raine JI, Huck CE, van de Flierdt T, Jamieson SSR, Stickley CE, van de Schootbrugge B, Escutia C, Brinkhuis H, and Integrated Ocean Drilling Program Expedition 318 Scientists (2012) Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488:73–77

    Google Scholar 

  • Rage J-C (1978) Une connexion continentale entre Amérique du Nord et Amérique du Sud au Crétacé superieur? L’exemple des vertébrés continentaux. Compt Rendu somm Sc Soc Géol France 6:281–285

    Google Scholar 

  • Rage J-C (2005) Fossil snakes from the Paleocene of São José de Itaboraí, Brazil. Part III. Ungaliophiinae, booids, incertae sedis, and Caenophidia. Summary, update, and discussion of the snake fauna from the locality. Palaeovertebrata 36(1–4):37–73

    Google Scholar 

  • Reguero MA, Marenssi SA (2010) Paleogene climatic and biotic events in the terrestrial record of the Antarctic Peninsula: an overview. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca. Cambridge University Press, Cambridge

    Google Scholar 

  • Reguero MA, Marenssi SA, Santillana SN (2002) Antarctic Peninsula and South America (Patagonia) Paleogene terrestrial faunas and environments: biogeographic relationships. Palaeogeogr Palaeoclimatol Palaeoecol 179:189–210

    Article  Google Scholar 

  • Rich TH, Rich PV, Flannery TF, Kear BP, Cantrill D, Komarower P, Kool L, Pickering D, Trusler P, Morton S, van Klaveren N, Fitgzgerald MG (2009) An Australian multituberculate and its paleobiogeographic implications. Acta Palaeontol Polonica 54(1):1-6

    Google Scholar 

  • Rougier GW, Chornogubsky L, Casadio S, Arango NP, Gaillombardo A (2009a) Mammals from the Allen Formation, Late Cretaceous, Argentina. Cretac Res 30:223–238

    Article  Google Scholar 

  • Rougier GW, Forasiepi AM, Hill RV, Novacek MJ (2009b) New mammalian remains from the Late Cretaceous La Colonia Formation, Patagonia. Argentina Acta Palaeont Pol 54(2):195–212

    Article  Google Scholar 

  • Rougier GW, Apesteguía S, Gaetano LS (2011) Highly specialized mammalian skulls from the Late Cretaceous of South America. Nature 479:98–102

    Article  Google Scholar 

  • Ruiz LE (2006) Estudio sedimetológico y estratigráfico de las formaciones Paso del Sapo y Lefipán en el valle medio del Río Chubut. Master thesis, University of Buenos Aires

    Google Scholar 

  • Salgado L, Gasparini Z (2006) Reappraisal of an ankylosaurian dinosaur from the Upper Cretaceous of James Ross Island (Antarctica). Geodiversitas 28(1):119–135

    Google Scholar 

  • Sánchez-Villagra M, Narita Y, Kuratani S (2007) Thoracolumbar vertebral number: the first skeletal synapomorphy for afrotherian mammals. Syst Biodiv 5(1):1–7

    Article  Google Scholar 

  • Scanlon JD (2005) Australia’s oldest known snakes: Patagoniophis, Alamitophis, and cf. Madtsoia (Squamata: Madstoiidae) from the Eocene of Queensland. Mem Queensland Mus 51(1):215–235

    Google Scholar 

  • Seiffert ER (2007) A new estimate of afrotherian phylogeny based on simultaneous analysis of genomic, morphological, and fossil evidence. BMC Evol Biol 7. doi:10.1186/1471-2148-7-224

    Google Scholar 

  • Sigé B, Sempere T, Butler RF, Marshall LG, Crochet JY (2004) Age and stratigraphic reassessment of the fossil-bearing Laguna Umayo red mudstone unit, SE Peru, from regional stratigraphy, fossil record, and paleomagnetism. Geobios 37:771–794

    Article  Google Scholar 

  • Sigé B, Archer M, Crochet J-Y, Godthelp H, Hand S, Beck RMD (2009) Chulpasia and Thylacotinga, late Paleocene-earliest Eocene trans-Antarctic Gondwanan bunodont marsupials: new data from Australia. Geobios 42:813–823

    Article  Google Scholar 

  • Sigogneau-Russell D (1991) First evidence of Multituberculata (Mammalia) in the Mesozoic of Africa. N Jb Pälaont Abh 2:119–125

    Google Scholar 

  • Simpson GG (1971) The evolution of marsupials in South America. Ann Acad Bras Ciénc 43:103–119

    Google Scholar 

  • Spalletti LA, Matheos SD, Merodio JC (1999) Sedimentitas carbonaticas Cretacico-Terciaris de la platforma norpatagonica. Actas 12 Congr Geol Arg, 2 Congr Expl Hidrocarburos 1:249–257

    Google Scholar 

  • Springer MS, Murphy WJ (2007) Mammalian evolution and biomedicine: new views from phylogeny. Biol Rev 82:375–392

    Article  Google Scholar 

  • Springer MS, Cleven GC, Madsen O, de Jong WW, Waddell VG, Amrine HM, Stanhope MJ (1997) Endemic African mammals shake the phylogenetic tree. Nature 388:61–64

    Article  Google Scholar 

  • Springer MS, Amrine HM, Burk A, Stanhope MJ (1999) Additional support for Afrotheria and Paenungulata, the performance of mitochondrial versus nuclear genes, and the impact of data partitions with heterogeneous base composition. Syst Zool 48(1):65–75

    Google Scholar 

  • Springer MS, Meredith RW, Teeling EC, Murphy WJ (2013) Technical comment on the placental mammal ancestor and the post–K-Pg radiation of placentals. Science 341:613

    Google Scholar 

  • Stanhope MJ, Madsen O, Waddell VG, Cleven GC, de Jong WW, Springer MS (1998) Highly congruent molecular support for a diverse superordinal clade of endemic African mammals. Mol Phylogenetics Evol 9(3):501–508

    Article  Google Scholar 

  • Stein M, Salisbury SW, Hand SJ, Archer M, Godthelp H (2012) Humeral morphology of the early Eocene mekosuchine crocodylian Kambara from the Tingamarra Local Fauna southeastern Queensland. Aust Alcheringa 36(4):1–15

    Google Scholar 

  • Szalay FS (1982) Phylogenetic relationships of the marsupials. Geobios Mém Spéc 6:177–190

    Article  Google Scholar 

  • Szalay FS (1994) Evolutionary history of the marsupials and an analysis of osteological characters. Cambridge University Press, New York

    Google Scholar 

  • Tabuce R, Marivaux L, Adaci M, Bensalah M, Hartenbarger J-L, Mahboubi M, Mebrouk F, Tafforeau P, Jaeger J-J (2007) Early Tertiary mammals from North Africa reinforce the molecular Afrotheria clade. Proc R Soc B 274:1159–1166

    Article  Google Scholar 

  • Tabuce R, Asher RJ, Lehmann T (2008) Afrotherian mammals: a review of current data. Mammalia 72:2–14

    Article  Google Scholar 

  • Tsuki K, Clyde WC (2012) Fine-tuning the caslibration of the early to meddle Eocene geomagnetic polarity time scale: Paleomagnetism of radioisotopically dated tuffs from Laramide foreland basins. Geol Soc Amer Bull 124(5/6):870–885

    Article  Google Scholar 

  • Vandenberghe N, Hilgen FJ, Speijer RP (2012) The Paleogene Period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012. Elsevier, Amsterdam

    Google Scholar 

  • Waddell PJ, Cao Y, Hasegawa M, Mindell DP (1999) Assessing the Cretaceous superordinal divergence times within birds and placental mammals using whole mitochrondrial protein sequences and an extended statistical framework. Syst Biol 48(1):119–137

    Article  Google Scholar 

  • Westerhold T, Röhl U, Donner B, McCarren H, Zachos J (2009) Latest on the absolute age of the Paleocene-Eocene Thermal Maximum (PETM): new insights from exact stratigraphic position of key ash layers +19 and -17. Earth Planet Sci Let 287:412–419

    Article  Google Scholar 

  • White TS (2004) A chemostratigraphic and geochemical facies analysis of strata deposited in an Eocene Australo-Antarctic Seaway: is cyclicity evidence for glacioeustacy? Amer Geophys Union Monogr Ser 148, Climate Evolution in the Southern Ocean 153–172

    Google Scholar 

  • Williamson TE, Carr TD (2007) Bomburia and Ellipsodon (Mammalia: Mioclaenidae) from the early Paleocene of New Mexico. J Paleontol 81(5):966–985

    Article  Google Scholar 

  • Willis PMA, Molnar RE, Scanlon JD (1993) An early Eocene crocodilian from Murgon, southeastern Queensland. Kaupia 3:27–33

    Google Scholar 

  • Wilson DS, Luyendyk BP (2009) West Antarctic paleotopography estimated at the Eocene-Oligocene climate transition. Geophys Res Let 36. doi:10.1029/2009GL039297

  • Wolfe JA (1978) A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. Amer Scient 66:694–703

    Google Scholar 

  • Woodburne MO (2004) Definition. In: Woodburne MO (ed) Late Cretaceous and Cenozoic Mammals of North America: biostratigraphy and geochronology. Columbia University Press, New York

    Chapter  Google Scholar 

  • Woodburne MO (2010) The Great American Biotic Interchange; dispersals, tectonics, climate, sea level and holding pens. J Mamm Evol 17:245–264

    Article  Google Scholar 

  • Woodburne MO, Case JA (1996) Dispersal, vicariance and the late Cretaceous to early Tertiary land mammal biogeography from South America to Australia. J Mamm Evol 3(2):121–161

    Article  Google Scholar 

  • Woodburne MO, Gunnell GF, Stucky RK (2009a) Climate directly influences Eocene mammal faunal dynamics in North America. PNAS 106(32):13399–13403

    Article  Google Scholar 

  • Woodburne MO, Gunnell GF, Stucky RK (2009b) Land mammal faunas of North America rise and fall during the Early Eocene Climatic Optimum. Denver Mus Nat Sci Ann 1:1–75

    Google Scholar 

  • Woodburne MO, Goin FJ, Bond M, Carlini A A, Gelfo JN, López GM, Iglesias A, Zimicz, AN (2014) Paleogene land mammal faunas of South America; a response to global climatic changes and indigenous floral diversity. J Mamm Evol. doi 10.1007/s10914-012-9222-1

  • Wroe S, Archer M (2006) Origins and early radiations of marsupials. In: Merrick J, Archer M, Hickey GM, Lee MSY (eds) Evolution and Biogeography of Australasian Vertebrates. Australian Scientific Publishing, Sydney

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billip K (2001) Trends, rhythms, and aberrations in global climate, 65 Ma to present. Science 292(5517):686–693

    Article  Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 45:279–283

    Article  Google Scholar 

  • Zack SP, Penkrot TA, Bloch JI, Rose KD (2005) Affinities of ‘hyopsodontids’ to elephant shrews and a Holarctic origin of Afrotheria. Nature 434:497–501

    Article  Google Scholar 

  • Zimicz AN (2012) Ecomorfología de los marsupiales paleógenos de América del Sur. Unpublished PhD. thesis, Universidad Nacional La Plata

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Goin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goin, F.J., Woodburne, M.O., Zimicz, A.N., Martin, G.M., Chornogubsky, L. (2016). Dispersal of Vertebrates from Between the Americas, Antarctica, and Australia in the Late Cretaceous and Early Cenozoic. In: A Brief History of South American Metatherians. Springer Earth System Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7420-8_3

Download citation

Publish with us

Policies and ethics