Skip to main content

Structural Perspective of Ferredoxin NAD(P)H Reductase Reactions with Cytochrome b 6 f Complexes

  • Chapter
  • First Online:
Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 41))

  • 1658 Accesses

Summary

The reaction of FNR with the Cytochrome b 6 f complex (Cyt bf) implies a role in cyclic electron transport. FNR is not a membrane protein but is also involved as a component of a cyclic electron transport ‘super-complex.’ It has been reported that FNR in higher plant chloroplasts is localized peripherally on the stromal side of thylakoid membranes through association with an intrinsic protein. Although several high-resolution X-ray structures of plant-type FNR are available, the exact binding mode of FNR to Cyt bf is still elusive. However, as high-resolution structures of Cyt bf and membrane bound FNR (L-FNR1) have become available, and possible patterns of the interaction can be structurally discussed through them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CEF:

Cyclic electron transport

Cyt:

Cytochrome

FAD:

Flavin adenine dinucleotide

Fd:

Ferredoxin

FNR:

Ferredoxin NAD(P)+ reductase

LET:

Linear electron transport

LHC:

Light harvesting chlorophyll protein

NADH:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

PAGE:

Polyacryl amide gel electrophoresis

PBS:

Phycobilisome

PC:

Plastocyanin

PDB:

Protein Data Bank

PS:

Photosystem

Tic:

Translocon at the inner envelope of chloroplast

Trx:

Thioredoxin

References

  • Aliverti A, Faber R, Finnerty CM, Ferioli C, Pandini V, Negri A, Karplus PA, …, Zanetti G (2001) Biochemical and crystallographic characterization of ferredoxin-NADP(+) reductase from nonphotosynthetic tissues. Biochemistry 40:14501–14508

    Google Scholar 

  • Aliverti A, Pandini V, Pennati A, de Rosa M, Zanetti G (2008) Structural and functional diversity of ferredoxin-NADP(+) reductases. Arch Biochem Biophys 474:283–291

    Article  CAS  PubMed  Google Scholar 

  • Alte F, Stengel A, Benz JP, Petersen E, Soll J, Groll M, Bölter B (2010) Ferredoxin:NADPH oxidoreductase is recruited to thylakoids by binding to a polyproline type II helix in a pH-dependent manner. Proc Natl Acad Sci 107:19260–19265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen B, Scheller HV, Moller BL (1992) The PSI-E subunit of photosystem I binds ferredoxin:NADP+ oxidoreductase. FEBS Lett 311:169–173

    Article  CAS  PubMed  Google Scholar 

  • Arteni AA, Ajlani G, Boekema EJ (2009) Structural organisation of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. Biochim Biophys Acta 1787:272–279

    Article  CAS  PubMed  Google Scholar 

  • Baniulis D, Yamashita E, Whitelegge JP, Zatsman AI, Hendrich MP, Hasan SS, Ryan CM, …, Cramer WA (2009) Structure-function, stability, and chemical modification of the cyanobacterial cytochrome b6f complex from Nostoc sp. PCC 7120. J Biol Chem 284:9861–9869

    Google Scholar 

  • Benz JP, Stengel A, Lintala M, Lee YH, Weber A, Philippar K, Gügel IL, …, Bölter B (2009) Arabidopsis Tic62 and ferredoxin-NADP(H) oxidoreductase form light-regulated complexes that are integrated into the chloroplast redox poise. Plant Cell 21:3965–3983

    Google Scholar 

  • Bortolotti A, Pérez-Dorado I, Goñi G, Medina M, Hermoso JA, Carrillo N, Cortez N (2009) Coenzyme binding and hydride transfer in Rhodobacter capsulatus ferredoxin/flavodoxin NADP (H) oxidoreductase. Biochim Biophys Acta 1794:199–210

    Article  CAS  PubMed  Google Scholar 

  • Bortolotti A, Sánchez-Azqueta A, Maya CM, Velázquez-Campoy A, Hermoso JA, Medina M, Cortez N (2014) The C-terminal extension of bacterial flavodoxin-reductases: involvement in the hydride transfer mechanism from the coenzyme. Biochim Biophys Acta 1837:33–43

    Article  CAS  PubMed  Google Scholar 

  • Bruns CM, Karplus PA (1995) Refined crystal structure of spinach ferredoxin reductase at 1.7 A resolution: oxidized, reduced and 2’-phospho-5’-AMP bound states. J Mol Biol 247:125–145

    Article  CAS  PubMed  Google Scholar 

  • Deng Z, Aliverti A, Zanetti G, Arakaki AK, Ottado J, Orellano EG, Calcaterra NB, …, Karplus PA (1999) A productive NADP+ binding mode of ferredoxin–NADP+ reductase revealed by protein engineering and crystallographic studies. Nat Struct Biol 6:847–853

    Google Scholar 

  • Dorowski A, Hofmann A, Steegborn C, Boicu M, Huber R (2001) Crystal structure of paprika ferredoxin-NADP+ reductase. Implications for the electron transfer pathway. J Biol Chem 276:9253– 9263

    Article  CAS  PubMed  Google Scholar 

  • Duvick J, Fu A, Muppirala U, Sabharwal M, Wilkerson MD, Lawrence CJ, Lushbough C, …, Brendel V (2008) PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res 36:D959–D965

    Google Scholar 

  • Gao X, Xin Y, Bell PD, Wen J, Blankenship RE (2010) Structural analysis of alternative complex III in the photosynthetic electron transfer chain of Chloroflexus aurantiacus. Biochemistry 49:6670–6679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanke GT, Okutani S, Satomi Y, Takao T, Suzuki A, Hase T (2005) Multiple iso‐proteins of FNR in Arabidopsis: evidence for different contributions to chloroplast function and nitrogen assimilation. Plant Cell Environ 28:1146–1157

    Article  CAS  Google Scholar 

  • Hasan SS, Cramer WA (2012) On rate limitations of electron transfer in the photosynthetic cytochrome b6f complex. Phys Chem Chem Phys 14:13853–13860

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan SS, Cramer WA (2014) Internal lipid architecture of the hetero-oligomeric cytochrome b6f complex. Structure 22:1008–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan SS, Stofleth JT, Yamashita E, Cramer WA (2013a) Lipid-induced conformational changes within the cytochrome b6f complex of oxygenic photosynthesis. Biochemistry 52:2649–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan SS, Yamashita E, Baniulis D, Cramer WA (2013b) Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex. Proc Natl Acad Sci U S A 110:4297–4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan SS, Yamashita E, Cramer WA (2013c) Transmembrane signaling and assembly of the cytochrome b6f-lipidic charge transfer complex. Biochim Biophys Acta 1827:1295–1308

    Article  CAS  PubMed Central  Google Scholar 

  • Heimann S, Ponamarev MV, Cramer WA (2000) Movement of the Rieske iron-sulfur protein in the p-side bulk aqueous phase: effect of lumenal viscosity on redox reactions of the cytochrome b6f complex. Biochemistry 39:2692–2699

    Article  CAS  PubMed  Google Scholar 

  • Hermoso JA, Mayoral T, Faro M, Gomez-Moreno C, Sanz-Aparicio J, Medina M (2002) Mechanism of coenzyme recognition and binding revealed by crystal structure analysis of ferredoxin–NADP+ reductase complexed with NADP+. J Mol Biol 319:1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Jurić S, Hazler‐Pilepić K, Tomašić A, Lepeduš H, Jeličić B, Puthiyaveetil S, Bionda T, …, Fulgosi H (2009) Tethering of ferredoxin:NADP+ oxidoreductase to thylakoid membranes is mediated by novel chloroplast protein TROL. Plant J 60:783–794

    Google Scholar 

  • Karplus PA, Daniels MJ, Herriott JR (1991) Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251:60–66

    Article  CAS  PubMed  Google Scholar 

  • Kimata Y, Hase T (1989) Localization of ferredoxin isoproteins in mesophyll and bundle sheath cell in maize leaf. Plant Physiol 89:1193–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimata‐Ariga Y, Matsumura T, Kada S, Fujimoto H, Fujita Y, Endo T, Mano J, …, Hase T (2000) Differential electron flow around photosystem I by two C4‐photosynthetic‐cell‐specific ferredoxins. EMBO J 19:5041–5050

    Google Scholar 

  • Kurisu G, Kusunoki M, Katoh E, Yamazaki T, Teshima K, Onda Y, Kimata-Ariga Y, Hase T (2001) Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP+ reductase. Nat Struct Biol 8:117–121

    Article  CAS  PubMed  Google Scholar 

  • Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Lintala M, Allahverdiyeva Y, Kidron H, Piippo M, Battchikova N, Suorsa M, Rintamäki E, …, Mulo P (2007) Structural and functional characterization of ferredoxin-NADP-oxidoreductase using knock-out mutants of Arabidopsis. Plant J 49:1041–1052

    Google Scholar 

  • Muraki N, Seo D, Shiba T, Sakurai T, Kurisu G (2010) Asymmetric dimeric structure of ferredoxin-NAD (P)+ oxidoreductase from the green sulfur bacterium Chlorobaculum tepidum: implications for binding ferredoxin and NADP+. J Mol Biol 401:403–414

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Sakamoto T, Wada K (2002) The complete purification and characterization of three forms of ferredoxin-NADP+ oxidoreductase from a thermophilic cyanobacterium synechococcus elongatus. Plant Cell Physiol 43:484–493

    Article  CAS  PubMed  Google Scholar 

  • Nogués I, Pérez-Dorado I, Frago S, Bittel C, Mayhew SG, Gómez-Moreno C, Hermoso JA, …, Carrillo N (2005) The ferredoxin-NADP (H) reductase from Rhodobacter capsulatus: molecular structure and catalytic mechanism. Biochemistry 44:11730–11740

    Google Scholar 

  • Okutani S, Hanke GT, Satomi Y, Takao T, Kurisu G, Suzuki A, Hase T (2005) Three maize leaf ferredoxin:NADPH oxidoreductases vary in subchloroplast location, expression, and interaction with ferredoxin. Plant Physiol 139:1451–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quiles MJ, Garcia A, Guello J (2000) Separation by blue-native PAGE and identification of the whole NAD(P)H dehydrogenase complex from barley stroma thylakoids. Plant Physiol Biochem 38:225–232

    Article  CAS  Google Scholar 

  • Seo D, Sakurai H (2002) Purification and characterization of ferredoxin-NAD(P)(+) reductase from the green sulfur bacterium Chlorobium tepidum. Biochim Biophys Acta 1597:123–132

    Article  CAS  PubMed  Google Scholar 

  • Serre L, Vellieux FM, Medina M, Gomez-Moreno C, Fontecilla-Camps JC, Frey M (1996) X-ray structure of the ferredoxin:NADP+ reductase from the cyanobacteriumAnabaenaPCC 7119 at 1.8 Å resolution, and crystallographic studies of NADP+ binding at 2.25 Å resolution. J Mol Biol 263:20–39

    Article  CAS  PubMed  Google Scholar 

  • Stroebel D, Choquet Y, Popot JL, Picot D (2003) An atypical haem in the cytochrome b6f complex. Nature 426:413–418

    Article  CAS  PubMed  Google Scholar 

  • Tang KH, Barry K, Chertkov O, Dalin E, Han CS, Hauser LJ, Honchak BM, …, Blankenship RE (2011) Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. BMC Genomics 12:334

    Google Scholar 

  • Twachtmann M, Altmann B, Muraki N, Voss I, Okutani S, Kurisu G, Hase T, Hanke GT (2012) N-terminal structure of maize ferredoxin:NADP+ reductase determines recruitment into different thylakoid membrane complexes. Plant Cell 24:2979–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Thor JJ, Gruters OW, Matthijs HC, Hellingwerf KJ (1999) Localization and function of ferredoxin:NADP+ reductase bound to the phycobilisomes of Synechocystis. EMBO J 18:4128–4136

    Article  PubMed  PubMed Central  Google Scholar 

  • van Thor JJ, Jeanjean R, Havaux M, Sjollema KA, Joset F, Hellingwerf KJ, Matthijs HC (2000) Salt shock-inducible photosystem I cyclic electron transfer in Synechocystis PCC6803 relies on binding of ferredoxin:NADP+ reductase to the thylakoid membranes via its CpcD phycobilisome-linker homologous N-terminal domain. Biochim Biophys Acta 1457:129–144

    Article  PubMed  Google Scholar 

  • Yamashita E, Zhang H, Cramer WA (2007) Structure of the cytochrome b6f complex: quinone analogue inhibitors as ligands of heme cn. J Mol Biol 370:39–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Cramer WA (2003) Functional insensitivity of the cytochrome b6f complex to structure changes in the hinge region of the Rieske iron-sulfur protein. J Biol Chem 278:20925–20933

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Whitelegge JP, Cramer WA (2001) Ferredoxin:NADP+ oxidoreductase is a subunit of the chloroplast cytochrome b6f complex. J Biol Chem 276:38159–38165

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genji Kurisu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kurisu, G. (2016). Structural Perspective of Ferredoxin NAD(P)H Reductase Reactions with Cytochrome b 6 f Complexes. In: Cramer, W., Kallas, T. (eds) Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling. Advances in Photosynthesis and Respiration, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7481-9_12

Download citation

Publish with us

Policies and ethics