Skip to main content

Gene Flow in Coral Reef Organisms of the Tropical Eastern Pacific

  • Chapter
  • First Online:
Coral Reefs of the Eastern Tropical Pacific

Part of the book series: Coral Reefs of the World ((CORW,volume 8))

Abstract

Gene flow can provide cohesion between conspecific populations. In order to obtain an indirect measure of gene flow between coral reef species in the eastern tropical Pacific (ETP) and between these populations and those of the rest of the Pacific we compiled available data from sequences of DNA and microsatellites for corals, gastropods, echinoderms and fishes, and calculated FST statistics. The ETP consists of a narrow strip of continental shelf along the coast of the Americas and a deeper water gap between the coast and the outer eastern Pacific Islands; a large expanse of deep ocean separates the ETP and the closest islands in the central Pacific. We have, therefore, compared populations in four major directions: (1) between the eastern and the central Pacific, (2) between the coast and the outer islands, (3) among the outer islands, and (4) along the coast and nearshore islands. The available data are biased in favor of showing high levels of gene flow because they contain an excess of transpacific species, which are a minority among ETP biota. Despite this bias, shallow water populations of the ETP are isolated from the rest of the world’s oceans. Occasional breaching of the expanse of water between the ETP and the Central Pacific by some species is also possible. Gene flow between the outer eastern Pacific islands and the mainland coast is variable, depending on the species examined. Gene flow among populations at the outer eastern Pacific islands is high except for those at Easter Island (Rapa Nui), in which all but one sampled species show large and significant values of FST in comparisons with populations from all other islands. Gene flow rates among populations along the ETP coast are high. There is no evident genetic break resulting from the Central American Gap (southern Mexico to the Gulf of Fonseca, Honduras) in any of the sampled species. A trend of isolation by distance along the coast is evident in corals and fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott DP (1966) Factors influencing the zoogeographic affinities of the Galápagos. In: Bowman RI (ed) the Galápagos. Univ California Press, Berkeley, pp 108–112

    Google Scholar 

  • Baird AH, Guest JR, Willis BL (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu Rev Ecol Evol S 40:551–571

    Article  Google Scholar 

  • Baums IB, Boulay JN, Polato NR, Hellberg ME (2012) No gene flow across the Eastern Pacific Barrier in the reef-building coral Porites lobata. Mol Ecol 21:5418–5433

    Article  Google Scholar 

  • Bernardi G, Alva-Campbell YR, Gasparini JL, Floeter SR (2008) Molecular ecology, speciation, and evolution of the reef fish genus Anisotremus. Mol Phylogenet Evol 48:929–935

    Article  CAS  Google Scholar 

  • Bowman RI (1966) The Galápagos. Univ California Press, Berkeley, California, p 318

    Google Scholar 

  • Briggs JC (1974) Marine zoogeography. McGraw-Hill, New York, p 475

    Google Scholar 

  • Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeogr 39:12–30

    Article  Google Scholar 

  • Case TJ, Taper ML (2000) Interspecific competition, environmental gradients, gene flow, and the coevolution of species’ borders. Am Nat 155:583–605

    Article  Google Scholar 

  • Coates AG, Obando JA (1996) The geologic evolution of the Central American Isthmus. In: Jackson JBC, Coates AG, Budd A (eds) Evolution and environment in tropical America. Univ Chicago Press, Chicago, pp 21–56

    Google Scholar 

  • Collins LS (1996) Environmental changes in Caribbean shallow waters relative to the closing tropical American seaway. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. Univ Chicago Press, Chicago, pp 130–167

    Google Scholar 

  • Combosch DJ, Guzmán HM, Schuhmacher H, Vollmer SV (2008) Interspecific hybridization and restricted trans-Pacific gene flow in the Tropical Eastern Pacific Pocillopora. Mol Ecol 17:1304–1312

    Article  CAS  Google Scholar 

  • Combosch DJ, Vollmer SV (2011) Population genetics of an ecosystem-defining reef coral Pocillopora damicornis in the Tropical Eastern Pacific. PLoS ONE 6(8):e21200. doi:10.1371/journal.pone.0021200

    Article  CAS  Google Scholar 

  • Craig MT, Hastings PA, Pondella DJ, Robertson DR, Rosales-Casian JA (2006) Phylogeography of the flag cabrilla Epinephelus labriformis (Serranidae): implications for the biogeography of the Tropical Eastern Pacific and the early stages of speciation in a marine shore fish. J Biogeogr 33:969–979

    Article  Google Scholar 

  • Craig MT, Eble JA, Bowen BW, Robertson DR (2007) High genetic connectivity across the Indian and Pacific Oceans in the reef fish Myripristis berndti (Holocentridae). Mar Ecol Prog Ser 334:245–254

    Article  CAS  Google Scholar 

  • Dana TF (1975) Development of contemporary eastern Pacific coral reefs. Mar Biol 33:355–374

    Article  Google Scholar 

  • Dawson MN, Grosberg RK, Stuart YE, Sanford E (2010) Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle Tetraclita rubescens. Mol Ecol 19:1585–1605

    Article  CAS  Google Scholar 

  • Duda TF, Lessios HA (2009) Connectivity of populations within and between major biogeographic regions of the tropical Pacific in Conus ebraeus, a widespread marine gastropod. Coral Reefs 28:651–659

    Article  Google Scholar 

  • Duda TF, Terbio M, Chen G, Phillips S, Olenzek AM, Chang D, Morris DW (2012) Patterns of population structure and historical demography of Conus species in the tropical Pacific. Am Malacol Bull 30:175–187

    Article  Google Scholar 

  • Ekman S (1953) Zoogeography of the sea. Sidgwick and Jackson Ltd, London, p 417

    Google Scholar 

  • Emerson WK (1978) Mollusks with Indo-Pacific faunal affinities in the eastern Pacific Ocean. Nautilus 92:91–96

    Google Scholar 

  • Emerson WK (1982) Zoogeographic implications of the occurrence of Indo-Pacific gastropods on the west American continental borderland. West Soc Malacol Ann Rep 1982:13–14

    Google Scholar 

  • Fell FJ (1974) The echinoids of Easter Island (Rapa Nui). Pac Sci 28:147–158

    Google Scholar 

  • Fitzpatrick JM, Carlon DB, Lippe C, Robertson DR (2011) The west Pacific diversity hotspot as a source or sink for new species? Population genetic insights from the Indo-Pacific parrotfish Scarus rubroviolaceus. Mol Ecol 20:219–234

    Article  CAS  Google Scholar 

  • Forsman ZH, Barshis DJ, Hunter CL, Toonen RJ (2009) Shape-shifting corals: molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol Biol 9:45. doi:10.1186/1471-2148-9-45

    Article  CAS  Google Scholar 

  • Glynn PW (1974) The impact of Acanthaster on corals and coral reefs in the eastern Pacific. Environ Conserv 1:295–304

    Article  Google Scholar 

  • Glynn PW, Wellington GM (1983) Corals and coral reefs of the Galápagos Islands. Univ California Press, Berkeley, p 330

    Google Scholar 

  • Glynn PW, Ault JS (2000) A biogeographic analysis and review of the far eastern Pacific coral reef region. Coral Reefs 19:1–23

    Article  Google Scholar 

  • Glynn PW, Gassman NJ, Eakin CM, CortĂ©s J, Smith DB, Guzmán HM (1991) Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galápagos Islands (Ecuador).1. Pocilloporidae. Mar Biol 109:355–368

    Article  Google Scholar 

  • Glynn PW, Veron JEN, Wellington GM (1996) Clipperton Atoll (eastern Pacific): oceanography, geomorphology, reef-building coral ecology and biogeography. Coral Reefs 15:71–99

    Article  Google Scholar 

  • Glynn PW, Wellington GM, Riegl B, Olson DB, Borneman E, Wieters EA (2007) Diversity and biogeography of the scleractinian coral fauna of Easter Island (Rapa Nui). Pac Sci 61:67–90

    Article  Google Scholar 

  • Grigg RW, Hey R (1992) Paleoceanography of the tropical eastern Pacific Ocean. Science 255:172–178

    Article  CAS  Google Scholar 

  • Grove JS, Lavenberg RJ (1997) The fishes of the Galápagos Islands. Stanford Univ Press, Stanford, CA, p 871

    Google Scholar 

  • Guzmán HM, Guevara CA, Breedy O (2004) Distribution, diversity, and conservation of coral reefs and coral communities in the largest marine protected area of Pacific Panama (Coiba Island). Environ Conserv 31:111–121

    Article  Google Scholar 

  • Haldane JBS (1956) The relation between density regulation and natural selection. Proc Royal Soc London Ser B-Biol Sci 145:306–308

    Article  CAS  Google Scholar 

  • Hastings PA (2000) Biogeography of the Tropical Eastern Pacific: distribution and phylogeny of chaenopsid fishes. Zool J Linn Soc 128:319–335

    Article  Google Scholar 

  • Haug GH, Tiedemann R (1998) Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393:673–676

    Article  CAS  Google Scholar 

  • Heck KL, McCoy ED (1978) Long-distance dispersal and the reef-building corals of the eastern Pacific. Mar Biol 48:349–356

    Article  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    CAS  Google Scholar 

  • Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evolutionary Biology 6:24. doi:10.1186/1471-2148-6-24

    Article  CAS  Google Scholar 

  • Hellberg ME (2007) Footprints on water: the genetic wake of dispersal among reefs. Coral Reefs 26:463–473

    Article  Google Scholar 

  • Hellberg ME (2009) Gene flow and isolation among populations of marine animals. Annu Rev Ecol Evol S 40:291–310

    Article  Google Scholar 

  • Hellberg ME, Burton RS, Neigel JE, Palumbi SR (2002) Genetic assessment of connectivity among marine populations. Bull Mar Sci 70:273–290

    Google Scholar 

  • Hertlein LG (1963) Contribution to the biogeography of Cocos Island, including a bibliography. Proc Calif Acad Sci 32:219–289

    Google Scholar 

  • Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760

    Article  CAS  Google Scholar 

  • Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132:583–589

    CAS  Google Scholar 

  • James MJ (1991) Galápagos marine invertebrates. Taxonomy, biogeography, and evolution in Darwin’s islands. Plenum, New York, p 474

    Google Scholar 

  • Jones GP, Milicich MJ, Emslie MJ, Lunow C (1999) Self-recruitment in a coral reef fish population. Nature 402:802–804

    Article  CAS  Google Scholar 

  • Johnson MS, Black R (1984) Pattern beneath the chaos: the effects of recruitment on genetic patchiness in an intertidal limpet. Evolution 38:1371–1383

    Article  Google Scholar 

  • Keigwin LD (1982) Isotopic paleoceanography of the Caribbean and east Pacific: role of Panama uplift in Late Neogene time. Science 217:350–353

    Article  CAS  Google Scholar 

  • Kessler WS (2006) The circulation of the eastern tropical Pacific: a review. Prog Oceanogr 69:181–217

    Article  Google Scholar 

  • Ketchum JT, Bonilla HR (2001) Taxonomy and distribution of the hermatypic corals (Scleractinia) of the Revillagigedo Archipelago, Mexico. Rev Biol Trop 49:803–848

    CAS  Google Scholar 

  • Lessios HA (2008) The great American schism: divergence of marine organisms after the rise of the Central American Isthmus. Annu Rev Ecol Evol S 39:63–91

    Article  Google Scholar 

  • Lessios HA, Weinberg JR (1993) Migration, gene flow and reproductive isolation between and within morphotypes of the isopod Excirolana in two oceans. Heredity 71:561–573

    Article  Google Scholar 

  • Lessios HA, Weinberg JR (1994) Genetic and morphological divergence among morphotypes of the isopod Excirolana on the two sides of the Isthmus of Panama. Evolution 48:530–548

    Article  Google Scholar 

  • Lessios HA, Robertson DR (2006) Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proc R Soc B-Biol Sci 273:2201–2208

    Article  CAS  Google Scholar 

  • Lessios HA, Kessing BD, Wellington GM, Graybeal A (1996) Indo-Pacific echinoids in the tropical eastern Pacific. Coral Reefs 15:133–142

    Article  Google Scholar 

  • Lessios HA, Kessing BD, Robertson DR (1998) Massive gene flow across the world’s most potent marine biogeographic barrier. Proc R Soc Lond Ser B 265:583–588

    Article  Google Scholar 

  • Lessios HA, Kessing BD, Robertson DR, Paulay G (1999) Phylogeography of the pantropical sea urchin Eucidaris in relation to land barriers and ocean currents. Evolution 53:806–817

    Article  Google Scholar 

  • Lessios HA, Kessing BD, Pearse JS (2001) Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution 55:955–975

    Article  CAS  Google Scholar 

  • Lessios HA, Kane J, Robertson DR (2003) Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans. Evolution 57:2026–2036

    Article  CAS  Google Scholar 

  • Lessios HA, Lockhart S, Collin R, Sotil G, Sanchez-Jerez P, Zigler KS, Perez AF, Garrido MJ, Geyer LB, Bernardi G, Vacquier VD, Haroun R, Kessing BD (2012) Phylogeography and bindin evolution in Arbacia, a sea urchin genus with an unusual distribution. Mol Ecol 21:130–144

    Article  CAS  Google Scholar 

  • Madsen FJ (1955) A note on the sea star genus Acanthaster. Vidensk Medd Dansk Naturhist Foren Kbh 117:179–192

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and the generalized regression approach. Cancer Res 27:209–220

    CAS  Google Scholar 

  • Marko PB, Hart MW (2012) Retrospective coalescent methods and the reconstruction of metapopulation histories in the sea. Evol Ecol 26:291–315

    Article  Google Scholar 

  • McCartney MA, Keller G, Lessios HA (2000) Dispersal barriers in tropical oceans and speciation of Atlantic and eastern Pacific Echinometra sea urchins. Mol Ecol 9:1391–1400

    Article  CAS  Google Scholar 

  • McCoy ED, Heck KL Jr (1976) Biogeography of corals, sea grasses, and mangroves: an alternative to the center of origin concept. Syst Zool 25:201–210

    Article  Google Scholar 

  • Montes C, Cardona A, McFadden R, Moron SE, Silva CA, Restrepo-Moreno S, Ramirez DA, Hoyos N, Wilson J, Farris D, Bayona GA, Jaramillo CA, Valencia V, Bryan J, Flores JA (2012) Evidence for middle Eocene and younger land emergence in central Panama: implications for Isthmus closure. Geol Soc Am Bull 124:780–799

    Article  CAS  Google Scholar 

  • Muss A, Robertson DR, Stepien CA, Wirtz P, Bowen BW (2001) Phylogeography of Ophioblennius: the role of ocean currents and geography in reef fish evolution. Evolution 55:561–572

    Article  CAS  Google Scholar 

  • Nishida M, Lucas JS (1988) Genetic differences between geographic populations of the crown-of-thorns starfish throughout the Pacific region. Mar Biol 98:359–368

    Article  Google Scholar 

  • O’Dea A, Jackson JBC, Fortunato H, Smith JT, D’Croz L, Johnson KG, Todd JA (2007) Environmental change preceded Caribbean extinction by 2 million years. Proc Natl Acad Sci USA 104:5501–5506

    Article  CAS  Google Scholar 

  • PinzĂłn JH, LaJeunesse TC (2011) Species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol Ecol 20:311–325

    Article  CAS  Google Scholar 

  • Pluzhnikov A, Donnelly P (1996) Optimal sequencing strategies for surveying molecular genetic diversity. Genetics 144:1247–1262

    CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Randall JE (1998) Zoogeography of shore fishes of the Indo-Pacific region. Zool Stud 37:227–268

    Google Scholar 

  • Rehder HA (1980) The marine mollusks of Easter Island (Isla de Pascua) and Sala y GĂłmez. Smithson Contrib Zool 289:1–167

    Article  Google Scholar 

  • Reyes-Bonilla H, Barraza JE (2003) Corals and associated marine communities from El Salvador. In: CortĂ©s J (ed) Latin American coral reefs. Elsevier, Amsterdam, pp 351–360

    Chapter  Google Scholar 

  • Richmond RH (1990) The effects of the El Niño/Southern Oscillation on the dispersal of corals and other marine organisms. In: Glynn PW (ed) Global ecological consequences of the 1982-83 El Niño-Southern Oscillation. Elsevier, Amsterdam, pp 127–140

    Chapter  Google Scholar 

  • Riginos C (2005) Cryptic vicariance in Gulf of California fishes parallels vicariant patterns found in Baja California mammals and reptiles. Evolution 59:2678–2690

    Article  Google Scholar 

  • Riginos C, Nachman MW (2001) Population subdivision in marine environments: the contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennioid fish, Axoclinus nigricaudus. Mol Ecol 10:1439–1453

    Article  CAS  Google Scholar 

  • Robertson DR (1998) Do coral-reef fish faunas have a distinctive taxonomic structure? Coral Reefs 17:179–186

    Article  Google Scholar 

  • Robertson DR, Allen GR (1996) Zoogeography of the shorefish fauna of Clipperton Atoll. Coral Reefs 15:121–131

    Article  Google Scholar 

  • Robertson DR, Cramer KL (2009) Shore fishes and biogeographic subdivisions of the Tropical Eastern Pacific. Mar Ecol Prog Ser 380:1–17

    Article  Google Scholar 

  • Robertson DR, Grove JS, McCosker JE (2004) Tropical transpacific shore fishes. Pac Sci 58:507–565

    Article  Google Scholar 

  • Rosenblatt RH, Waples RS (1986) A genetic comparison of allopatric populations of shore fish species from the eastern and central Pacific Ocean: dispersal or vicariance? Copeia 1986:275–284

    Article  Google Scholar 

  • Saarman NP, Louie KD, Hamilton H (2010) Genetic differentiation across eastern Pacific oceanographic barriers in the threatened seahorse Hippocampus ingens. Conserv Genet 11:1989–2000

    Article  Google Scholar 

  • Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol S 40:415–436

    Article  Google Scholar 

  • Shearer TL, Van Oppen MJH, Romano SL, Worheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487

    Article  CAS  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    CAS  Google Scholar 

  • Sponer R, Lessios HA (2009) Mitochondrial phylogeography of the intertidal isopod Excirolana braziliensis on the two sides of the Isthmus of Panama. Smith Contr Mar Sci 38:219–228

    Google Scholar 

  • Stepien CA, Rosenblatt RH, Bargmeyer BA (2001) Phylogeography of the spotted sand bass, Paralabrax maculatofasciatus: divergence of Gulf of California and Pacific Coast populations. Evolution 55:1852–1862

    Article  CAS  Google Scholar 

  • Swearer SE, Caselle JE, Lea DW, Warner RR (1999) Larval retention and recruitment in an island population of a coral-reef fish. Nature 402:799–802

    Article  CAS  Google Scholar 

  • Swearer SE, Shima JS, Hellberg ME, Thorrold SR, Jones GP, Robertson DR, Morgan SG, Selkoe KA, Ruiz GM, Warner RR (2002) Evidence of self-recruitment in demersal marine populations. Bull Mar Sci 70:251–271

    Google Scholar 

  • Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109

    Article  CAS  Google Scholar 

  • Todd PA (2008) Morphological plasticity in scleractinian corals. Biol Rev 83:315–337

    Article  Google Scholar 

  • Vermeij GJ (1978) Biogeography and adaptation. Harvard Univ Press, Cambridge, Mass, p 332

    Google Scholar 

  • Veron JEN (1995) Corals in space and time: the biogeography and evolution of the Scleractinia. Ithaca, Comstock/Cornell, p 321

    Google Scholar 

  • Vogler C, Benzie J, Lessios H, Barber P, Worheide G (2008) A threat to coral reefs multiplied? Four species of Crown-of-thorns Starfish. Biology Lett 4:696–699

    Article  Google Scholar 

  • Webb SD (1976) Mammalian faunal dynamics of the great American interchange. Paleobiology 2:220–234

    Article  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST≠ 1/(4Nm+ 1). Heredity 82:117–125

    Article  Google Scholar 

  • Willis BL, van Oppen MJH, Miller DJ, Vollmer SV, Ayre DJ (2006) The role of hybridization in the evolution of reef corals. Annu Rev Ecol Evol S 37:489–517

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  Google Scholar 

  • Wright S (1951) The genetic structure of populations. Ann Eugen 15:323–354

    Article  CAS  Google Scholar 

  • Yakovleva IM, Baird AH, Yamamoto HH, Bhagooli R, Nonaka M, Hidaka M (2009) Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Mar Ecol Prog Ser 378:105–112

    Article  CAS  Google Scholar 

  • Zigler KS, Lessios HA (2003) Evolution of bindin in the pantropical sea urchin Tripneustes: comparisons to bindin of other genera. Mol Biol Evol 20:220–231

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Bernardi, S. Coppard, L. Geyer, A. Hiller, P.W. Glynn, and C. Riginos for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Lessios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lessios, H.A., Baums, I.B. (2017). Gene Flow in Coral Reef Organisms of the Tropical Eastern Pacific. In: Glynn, P., Manzello, D., Enochs, I. (eds) Coral Reefs of the Eastern Tropical Pacific. Coral Reefs of the World, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7499-4_16

Download citation

Publish with us

Policies and ethics