Skip to main content

Magnetic Properties of Cobalt and Nitrogen Co-modified Titanium Dioxide Nanocomposites

  • Conference paper
  • First Online:
Nanomaterials for Security

Abstract

A short review of papers devoted to study the magnetic properties of cobalt doped titanium dioxide (TiO2) in thin film or nanoparticles form is given. Besides, cobalt and nitrogen co-modified titanium dioxide nanocomposites, nCo,N-TiO2 (where n = 1, 5 and 10 wt % of Co) have been prepared and investigated by dc magnetization measurements in 2–300 K range and in external magnetic fields up to 7 T. Complex magnetic structure of investigated nanocomposites have been revealed. The samples are ferromagnetic with Curie temperature above room temperature and no superparamagnetic behavior was registered in the studied temperature range. Comparison of obtained magnetic parameters (saturation magnetization, remanent magnetization and coercive field) of nCo,N-TiO2 with previously studied similar nanocomposites, nFe,N-TiO2 and nNi,N-TiO2, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639

    Article  Google Scholar 

  2. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891

    Article  Google Scholar 

  3. Diebold U (2003) The surface science of titanium dioxide. Sur Sci Rep 48:53

    Article  Google Scholar 

  4. Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19:145605

    Article  ADS  Google Scholar 

  5. Othman SH, Abd Salam NR, Zainal N, Basha RK, Talib RA (2014) Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. Int J Photoenergy 2014:945930

    Article  Google Scholar 

  6. Kisch H, Macyk W (2002) Visible-light photocatalysis by modified titania. Chem Phys Chem 3:399

    Google Scholar 

  7. Dozzi MV, Selli E (2013) Doping TiO2 with p-block elements: effects on photocatalytic activity. J Photochem Photobiol C: Photochem Rev 14:13

    Article  Google Scholar 

  8. Tian Y-F, Hu S-J, Yan S-S, Mei L-M (2013) Oxide magnetic semiconductors: materials, properties, and devices. Chin Phys B 22(8): 088505

    Article  ADS  Google Scholar 

  9. Choudhury B, Verma R, Choudhury A (2014) Oxygen defect assisted paramagnetic to ferromagnetic conversion in Fe doped TiO2 nanoparticles. RSC Adv 4:29314

    Article  Google Scholar 

  10. Kruchinin S, Dzezherya Yu, Annett J (2006) Imteractions of nanoscale ferromagnetic granules in a London superconductors. Supercond Sci Technol 19:381–384

    Article  ADS  Google Scholar 

  11. Kruchinin S, Nagao H (2012) Nanoscale superconductivity. Inter J Mod Phys B 26:1230013

    Article  ADS  MATH  Google Scholar 

  12. Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S-Y, Koinuma H (2001) Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291:854–856

    Article  ADS  Google Scholar 

  13. Kim J-Y, Park J-H, Park B-G, Noh H-J, Oh S-J, Yang JS, Kim D-H, Bu SD, Noh T-W, Lin H-J, Hsieh H-H, Chen CT (2003) Ferromagnetism induced by clustered Co in Co-doped anatase TiO2 thin films. Phys Rev Lett 90:017401

    Article  ADS  Google Scholar 

  14. Shinde SR, Ogale SB, Sarma SD, Simpson JR, Drew HD, Lofland SE, Lanci C, Buban JP, Browning ND, Kulkarni VN, Higgins J, Sharma RP, Greene RL, Venkatesan T (2003) Ferromagnetism in laser deposited anatase Ti1−x Co x O2−δ films. Phys Rev B 67:115211

    Article  ADS  Google Scholar 

  15. Janisch R, Gopal P, Spaldin N (2005) Transition metal-doped TiO2 and ZnO–present status of the field. J Phys Condens Matter 17:R657–R689

    Article  ADS  Google Scholar 

  16. Bryan JD, Santangelo SA, Keveren SC, Gamelin DR (2005) Activation of high-TC ferromagnetism in Co2+:TiO2 and Cr3+:TiO2 nanorods and nanocrystals by grain boundary defects. J Am Chem Soc 127:15568–15574

    Article  Google Scholar 

  17. Griffin KA, Pakhomov AB, Wang CM, Heald SM, Krishan KM (2005) Intrinsic ferromagnetism in insulating cobalt doped anatase TiO2. Phys Rev Lett 94:157204

    Article  ADS  Google Scholar 

  18. Kaspar TC, Droubay T, McCready DE, Nachimuthu P, Heald SM, Wang CM, Lea AS, Shutthanandan V, Chamber SA, Toney MF (2006) Magnetic properties of epitaxial Co-doped anatase TiO2 thin films with excellent structural quality. J Vac Sci Technol B 24:2012

    Article  Google Scholar 

  19. Huang C, Liu X, Kong L, Lan W, Su Q, Wang Y (2007) The structural and magnetic properties of Co-doped titanate nanotubes synthesized under hydrothermal conditions. Appl Phys A 87:781–786

    Article  ADS  Google Scholar 

  20. Liu LF, Kang JF, Wang Y, Tang H, Kong LG, Sun L, Zhang X, Han RQ (2007) The influence of hydrogen annealing on magnetism of Co-doped TiO2 films prepared by sol–gel method. J Magn Magn Mater 308:85–89

    Article  ADS  Google Scholar 

  21. Griffin RK, Varela M, Rashkeev S, Pantelides ST, Pennycook SJ, Krishnan KM (2008) Defect-mediated ferromagnetism in insulating Co-doped anatase TiO2 thin films. Phys Rev B 78:014409

    Article  ADS  Google Scholar 

  22. Pereira LCJ, Nunes MR, Monteiro OC, Silvestre AJ (2008) Magnetic properties of Co-doped TiO2 anatase nanopowders. Appl Phys Lett 93:222502

    Article  ADS  Google Scholar 

  23. Fukumura T, Toyosai H, Ueno K, Nakano M, Kawasaki M (2008) Role of chargé carriers for ferromagnetism in cobalt-doped rutile TiO2. New J Phys 10:055018

    Article  Google Scholar 

  24. Wei XH, Skomski R, Sellmyer DJ (2009) Structure and magnetism of pure and co-doped TiO2 clusters. IEEE Trans Magn 45:4089

    Article  ADS  Google Scholar 

  25. Xu J, Shi S, Li L, Zhang X, Wang Y, Chen X, Wang J, Lv L, Zhang F, Zhong W (2010) Structural, optical, and ferromagnetic properties of Co-doped TiO2 films annealed in vacuum. J Appl Phys 107:053910

    Article  ADS  Google Scholar 

  26. Jiang BZ, Phan TL, Yang DS, Lee KW, Yu SC (2010) Magnetism in Co-doped rutile TiO2 nanoparticles. Solid State Commun 150:1932

    Article  ADS  Google Scholar 

  27. Karthik K, Pandian SK, Kumar KS, Jaya NV (2010) Influence of dopant level on structural, optical and magnetic properties of Co-doped anatase TiO2 nanoparticles. Appl Surf Sci 256:4757

    Article  ADS  Google Scholar 

  28. Santara B, Pal B, Giri PK (2011) Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. J Appl Phys 110:114322

    Article  ADS  Google Scholar 

  29. Choudhury B, Choudhury A, MaidulIslam AKM, Alagarsamy P, Mukherjee M (2011) Effect of oxygen vacancy and dopant concentration on the magnetic properties of high spin Co2+ doped TiO2 nanoparticles. J Magn Magn Mater 323:440

    Article  ADS  Google Scholar 

  30. Yamada Y, Fukumura T, Ueno K, Kawasaki M (2011) Control of ferromagnetism at room temperature in (Ti,Co)O2−δ via chemical doping of electron carriers. Appl Phys Lett 99:242502

    Article  ADS  Google Scholar 

  31. Mohanty P, Mishra NC, Choudhary RJ, Banerjee A, Shripathi T, Lalla NP, Annapoorni S, Chandana R (2012) Oxygen vacancy induced phase formation and room temperature ferromagnetism in undoped and Co-doped TiO2 thin films. J Phys D: Appl Phys 45:32530

    Article  Google Scholar 

  32. Silvestre AJ, Pereira LC, Nunes MR, Monteiro OC (2012) Ferromagnetic order in aged Co-doped TiO2 anatase nanopowders. J Nanosci Nanotechnol 12:6850

    Article  Google Scholar 

  33. Rashad MM, Elsayed EM, Al-Kotb MS, Shalan AE (2013) The structural, optical, magnetic and photocatalytic properties of transition metal ions doped TiO2 nanoparticles. J Alloy Compd 581:71–78

    Article  Google Scholar 

  34. Sadanandam G, Lalitha K, Kumari VD, Shankar MV, Subrahmanyam M (2013) Cobalt doped TiO2: a stable and efficient photocatalyst for continuous hydrogen production from glycerol: water mixtures under solar light irradiation. Int J Hydrog Energy 38:9655

    Article  Google Scholar 

  35. Tian J, Gao H, Kong H, Yang P, Zhan W, Chu J (2013) Influence of transition metal doping on the structural, optical, and magnetic properties of TiO2 films deposited on Si substrates by a sol–gel process. Nanoscale Res Lett 8:533

    Article  ADS  Google Scholar 

  36. Nakai I, Sasano M, Inui K, Korekawa T, Ishijima H, Katoh H (2013) Oxygen vacancy and magnetism of a room temperature ferromagnet Co-doped TiO2. J Korean Phys Soc 63(3):532–537

    Article  Google Scholar 

  37. Kaushik A, Dalela B, Kumar S, Alvi PA, Dalela S (2013) Role of Co doping on structural, optical and magnetic properties of TiO2. J Alloy Compd 552:274–278

    Article  Google Scholar 

  38. Mohanty P, Singh VP, Mishra NC, Ojha S, Kanjilal D, Rath C (2014) Evolution of structural and magnetic properties of Co-doped TiO2 thin films irradiated with 100 MeV Ag7+ ions. J Phys D: Appl Phys 47:315001

    Article  ADS  Google Scholar 

  39. Guskos N, Zolnierkiwicz G, Guskos A, Typek J, Berczynski P, Dolat D, Mozia S, Aidinis K, Morawski AW (2015) Magnetic resonance study of co-modified (Co,N)-TiO2 nanocomposites. Nukleonika 60(3):411–416

    Article  Google Scholar 

  40. Wang Q, Liu X, Wei X, Dai J, Li W (2015) Ferromagnetic property of Co and Ni doped TiO2 nanoparticles. J Nanomater 2015:371582

    Google Scholar 

  41. Guskos N, Zolnierkiwicz G, Guskos A, Typek J, Berczynski P, Dolat D, Mozia S, Aidinis A, Kruk K, Morawski AW. Temperature study of magnetic resonance spectra of Co-modified (Co,N)-TiO2 nanocomposites. Mater Sci-Poland. Submitted for publications

    Google Scholar 

  42. Guskos N, Typek J, Zolnierkiewicz G, Glenis S, Diamantopoulou A, Mozia S, Morawski AW. Magnetic properties of cobalt and nitrogen co-modified titanium dioxide nanocomposites, this publication

    Google Scholar 

  43. Guskos N, Typek J, Zolnierkiewicz G, Glenis S, Diamantopoulou A, Dolat D, Mozia S, Morawski AW. Magnetic properties of co-modified Ni,N-TiO2 nanocomposites. Rev Adv Mat Sci. Submitted for publication

    Google Scholar 

  44. Guskos N, Glenis S, Zolnierkiewicz G, Guskos A, Typek J, Berczynski P, Dolat D, Mozia S, Morawski AW (2015) Magnetic properties of Co-modified Fe,N-TiO2 nanocomposites. Open Phys 13:76–86

    Google Scholar 

Download references

Acknowledgements

Partially this research was supported by The National Science Center (Poland) under project MAESTRO No. DEC-2012/06/A/ST5/00226.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Guskos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Guskos, N., Typek, J., Zolnierkiewicz, G., Kusiak-Nejman, E., Mozia, S., Morawski, A.W. (2016). Magnetic Properties of Cobalt and Nitrogen Co-modified Titanium Dioxide Nanocomposites. In: Bonča, J., Kruchinin, S. (eds) Nanomaterials for Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7593-9_9

Download citation

Publish with us

Policies and ethics