Skip to main content

Multifunctional Protein-Based Nanoparticles for Cancer Theranosis

  • Chapter
  • First Online:
Intracellular Delivery II

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 7))

  • 1792 Accesses

Abstract

Selective delivery of therapeutic and/or diagnostic (theranostic) agents to diseased sites represents a major challenge to improve the outcome of current therapy and our ability to detect cancer cells at early stages or in the spread sites. A promising route to reach this goal is the design and engineering of functionalized nanoparticle (NP)-based carriers for targeted delivery of drug or diagnostic agents. Protein-based nanocarriers are attracting growing interest due to their exceptional characteristics, namely biodegradability, solubility, functionalization versatility and extraordinary binding capacity of various drugs. We highlight the use of these cage-shaped protein-based materials, with special emphasis on ferritin, as smart building blocks for the development of multifunctional NPs for cancer theranosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NP:

Nanoparticle

Hsp:

Heat shock proteins

Ft:

Ferritin

EPR:

Enhanced permeability and retention

mAbs:

Monoclonal antibodies

MRI:

Magnetic resonance imaging

Fe3O4 :

Magnetite

PEG:

Polyethylene glycol

CTP:

Carboxyl terminal peptide

VLP:

Viral-like particles

CPMV:

Cowpea mosaic virus

CCMV:

Cowpea Chlorotic Mottle Virus

sHsp:

Small heat shock proteins

Dps:

DNA-binding proteins from starved cells

HFt:

Human Ft

USPIO:

Ultrasmall Superparamagnetic Iron Oxide

TMB:

3,3′, 5,5′-Tetramethylbenzidine

DAB:

3,3′-Diaminobenzidine

PET:

Positron emission tomography

NIRF:

Near infrared fluorophores

MB:

Methylene blue

MFH:

Magnetic fluid hyperthermia

RGD:

Arginine-glycine-aspartate

α-MSH:

Α-melanocyte-stimulating hormone

EGF:

Epidermal growth factor

FcBP:

Fc-binding peptide

IgGs:

Immunoglobulins G

TfR1:

Transferrin receptor 1

References

  • Ai J, Biazar E, Jafarpour M, Montazeri M, Majdi A, Aminifard S, Zafari M, Akbari HR, Rad HG (2011) Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomed 6:1117–1127

    CAS  Google Scholar 

  • Allen M, Bulte JWM, Liepold L, Basu G, Zywicke HA, Frank JA, Young M, Douglas T (2005) Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Magnet Reson Med 54(4):807–812 10.1002/Mrm.20614

    CAS  Google Scholar 

  • Anderson EA, Isaacman S, Peabody DS, Wang EY, Canary JW, Kirshenbaum K (2006) Viral nanoparticles donning a paramagnetic coat: conjugation of MRI contrast agents to the MS2 capsid. Nano Lett 6(6):1160–1164.doi:10.1021/nl060378g

    CAS  PubMed  Google Scholar 

  • Arcangeli C, Circelli P, Donini M, Aljabali AA, Benvenuto E, Lomonossoff GP, Marusic C (2013) Structure-based design and experimental engineering of a plant virus nanoparticle for the presentation of immunogenic epitopes and as a drug carrier. J Biomol Struct Dyn. doi:10.1080/07391102.2013.785920

    PubMed  Google Scholar 

  • Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, Lino CA, Padilla DP, Phillips B, Carter MB, Willman CL, Brinker CJ, Caldeira Jdo C, Chackerian B, Wharton W, Peabody DS (2011) Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano 5(7):5729–5745. doi:10.1021/nn201397z

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aubin-Tam ME (2013) Conjugation of nanoparticles to proteins. Methods Mol Biol 1025:19–27. doi:

    CAS  PubMed  Google Scholar 

  • Babincova M, Leszczynska D, Sourivong P, Babinec P (2000) Selective treatment of neoplastic cells using ferritin-mediated electromagnetic hyperthermia. Med Hypotheses 54(2):177–179. doi:10.1054/mehy.1999.0011

    CAS  PubMed  Google Scholar 

  • Banerjee D, Liu AP, Voss NR, Schmid SL, Finn MG (2010) Multivalent display and receptor-mediated endocytosis of transferrin on virus-like particles. ChemBioChem 11(9):1273–1279. doi:10.1002/cbic.201000125

    CAS  PubMed  Google Scholar 

  • Bao G, Mitragotri S, Tong S (2013) Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 15:253–282. doi:10.1146/annurev-bioeng-071812-152409

    CAS  PubMed  Google Scholar 

  • Baronzio G, Schwartz L, Kiselevsky M, Guais A, Sanders E, Milanesi G, Baronzio M, Freitas I (2012) Tumor interstitial fluid as modulator of cancer inflammation, thrombosis Immunity and Angiogenesis. Ant-icancer Res 32(2):405–414

    CAS  Google Scholar 

  • Bedi D, Gillespie JW, Petrenko VA, Ebner A, Leitner M, Hinterdorfer P, Petrenko VA (2013) Targeted delivery of siRNA into breast cancer cells via phage fusion proteins. Mol Pharmaceut 10(2):551–559. doi:10.1021/Mp3006006

    CAS  Google Scholar 

  • Blazkova I, Nguyen HV, Dostalova S, Kopel P, Stanisavljevic M, Vaculovicova M, Stiborova M, Eckschlager T, Kizek R, Adam V (2013) Apoferritin modified magnetic particles as Doxorubicin carriers for anticancer drug delivery. Int J Mol Sci 14(7):13391–13402. doi: ijms140713391 [pii] 10.3390/ijms140713391

  • Bode SA, Minten IJ, Nolte RJ, Cornelissen JJ (2011) Reactions inside nanoscale protein cages. Nanoscale 3(6):2376–2389. doi:10.1039/c0nr01013h

    CAS  PubMed  Google Scholar 

  • Campos SK, Barry MA (2007) Current advances and future challenges in adenoviral vector biology and targeting. Curr Gene Ther 7(3):189–204. doi:10.2174/156652307780859062

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carrico ZM, Farkas ME, Zhou Y, Hsiao SC, Marks JD, Chokhawala H, Clark DS, Francis MB (2012) N-Terminal labeling of filamentous phage to create cancer marker imaging agents. ACS Nano 6(8):6675–6680. doi:10.1021/nn301134z

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chatterjee DK, Diagaradjane P, Krishnan S (2011) Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv 2(8):1001–1014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Shao R, Zhang XD, Chen C (2013a) Applications of nanotechnology for melanoma treatment, diagnosis, and theranostics. Int J Nanomed 8:2677–2688. doi: 10.2147/IJN.S45429 ijn-8-2677 [pii]

    Google Scholar 

  • Chen W, Cao Y, Liu M, Zhao Q, Huang J, Zhang H, Deng Z, Dai J, Williams DF, Zhang Z (2012) Rotavirus capsid surface protein VP4-coated Fe(3)O(4) nanoparticles as a theranostic platform for cellular imaging and drug delivery. Biomaterials 33(31):7895–7902. doi: S0142-9612(12)00785-5 [pii] 10.1016/j.biomaterials.2012.07.016

  • Chen WH, Xu XD, Jia HZ, Lei Q, Luo GF, Cheng SX, Zhuo RX, Zhang XZ (2013b) Therapeutic nanomedicine based on dual-intelligent functionalized gold nanoparticles for cancer imaging and therapy in vivo. Biomaterials. doi: S0142-9612(13)00898-3 [pii] 10.1016/j.biomaterials.2013.07.084

  • Chiancone E, Ceci P (2010) The multifaceted capacity of Dps proteins to combat bacterial stress conditions: Detoxification of iron and hydrogen peroxide and DNA binding. Biochimica et Biophysica Acta (BBA) —General Subjects 1800(8):798–805

    Google Scholar 

  • Choi SH, Kwon IC, Hwang KY, Kim IS, Ahn HJ (2011) Small heat shock protein as a multifunctional scaffold: integrated tumor targeting and caspase imaging within a single cage. Biomacromolecules 12(8):3099–3106. doi:10.1021/Bm200743g

    CAS  PubMed  Google Scholar 

  • Chorny M, Fishbein I, Tengood JE, Adamo RF, Alferiev IS, Levy RJ (2013) Site-specific gene delivery to stented arteries using magnetically guided zinc oleate-based nanoparticles loaded with adenoviral vectors. Faseb J 27(6):2198–2206. doi:10.1096/Fj.12-224659

    CAS  PubMed  Google Scholar 

  • Cormode DP, Jarzyna PA, Mulder WJM, Fayad ZA (2010) Modified natural nanoparticles as contrast agents for medical imaging. Adv Drug Deliver Rev 62(3):329–338. doi:10.1016/j.addr.2009.11.005

    CAS  Google Scholar 

  • Crich SG, Bussolati B, Tei L, Grange C, Esposito G, Lanzardo S, Camussi G, Aime S (2006) Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe. Cancer Res 66(18):9196–9201. doi:10.1158/0008-5472.Can-06-1728

    Google Scholar 

  • Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146. doi: S0168-3659(10)00710-8 [pii] 10.1016/j.jconrel.2010.08.027

  • de la Rica R, Matsui H (2010) Applications of peptide and protein-based materials in bionanotechnology. Chem Soc Rev 39(9):3499–3509. doi:10.1039/B917574c

    PubMed  Google Scholar 

  • Dehal PK, Livingston CF, Dunn CG, Buick R, Luxton R, Pritchard DJ (2010) Magnetizable antibody-like proteins. Biotechnol J 5(6):596–604. doi:10.1002/biot.200900273

    CAS  PubMed  Google Scholar 

  • Ding H, Wu F (2012) Image guided biodistribution and pharmacokinetic studies of theranostics. Theranostics 2(11):1040–1053. doi: thnov02p1040 [pii] 10.7150/thno.4652

  • Dominguez-Vera JM, Fernandez B, Galvez N (2010) Native and synthetic ferritins for nanobiomedical applications: recent advances and new perspectives. Future Med Chem 2(4):609–618. doi:10.4155/fmc.09.171

    CAS  PubMed  Google Scholar 

  • Essa S, Rabanel JM, Hildgen P (2011) Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density. Int J Pharm 411(1–2):178–187. doi: S0378-5173(11)00174-8 [pii] 10.1016/j.ijpharm.2011.02.039

  • Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, Song L, Liang M, Yan X (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7(7):459–464. doi: nnano.2012.90 [pii] 10.1038/nnano.2012.90

  • Fan K, Gao L, Yan X (2013) Human ferritin for tumor detection and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(4):287–298. doi:10.1002/wnan.1221

    CAS  PubMed  Google Scholar 

  • Fan R, Chew SW, Cheong VV, Orner BP (2010) Fabrication of gold nanoparticles inside unmodified horse spleen apoferritin. Small 6(14):1483–1487. doi:10.1002/smll.201000457

    CAS  PubMed  Google Scholar 

  • Fares F, Ganem S, Hajouj T, Agai E (2007) Development of a long-acting erythropoietin by fusing the carboxyl-terminal peptide of human chorionic gonadotropin beta-subunit to the coding sequence of human erythropoietin. Endocrinology 148(10):5081–5087. doi:10.1210/en.2007-0026

    CAS  PubMed  Google Scholar 

  • Ferrari R, Colombo C, Casali C, Lupi M, Ubezio P, Falcetta F, D’Incalci M, Morbidelli M, Moscatelli D (2013) Synthesis of surfactant free PCL-PEG brushed nanoparticles with tunable degradation kinetics. Int J Pharm 453(2):551–559. doi:10.1016/j.ijpharm.2013.06.020

    CAS  PubMed  Google Scholar 

  • Flenniken ML, Willits DA, Brumfield S, Young MJ, Douglas T (2003) The small heat shock protein cage from Methanococcus jannaschii is a versatile nanoscale platform for genetic and chemical modification. Nano Lett 3(11):1573–1576. doi:10.1021/Nl034786l

    CAS  Google Scholar 

  • Flenniken ML, Willits DA, Harmsen AL, Liepold LO, Harmsen AG, Young MJ, Douglas T (2006) Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. Chem Biol 13(2):161–170. doi:10.1016/j.chembiol.2005.11.007

    CAS  PubMed  Google Scholar 

  • Franzen S, Lommel SA (2009) Targeting cancer with ‘smart bombs’: equipping plant virus nanoparticles for a ‘seek and destroy’ mission. Nanomedicine (Lond) 4(5):575–588. doi:10.2217/nnm.09.23

    CAS  Google Scholar 

  • Friedman AD, Claypool SE, Liu R (2013) The Smart Targeting of Nanoparticles. Curr Pharm Des. doi: CPD-EPUB-20130304-8 [pii]

    Google Scholar 

  • Frolova OY, Petrunia IV, Komarova TV, Kosorukov VS, Sheval EV, Gleba YY, Dorokhov YL (2010) Trastuzumab-binding peptide display by Tobacco mosaic virus. Virology 407(1):7–13. doi: S0042-6822(10)00522-2 [pii] 10.1016/j.virol.2010.08.005

  • Galaup A, Gomez E, Souktani R, Durand M, Cazes A, Monnot C, Teillon J, Le Jan S, Bouleti C, Briois G, Philippe J, Pons S, Martin V, Assaly R, Bonnin P, Ratajczak P, Janin A, Thurston G, Valenzuela DM, Murphy AJ, Yancopoulos GD, Tissier R, Berdeaux A, Ghaleh B, Germain S (2012) Protection against myocardial infarction and no-reflow through preservation of vascular integrity by Angiopoietin-like 4. Circulation 125(1):140–U557. doi:10.1161/Circulationaha.111.049072

    CAS  PubMed  Google Scholar 

  • Galaway FA, Stockley PG (2013) MS2 viruslike particles: a robust, semisynthetic targeted drug delivery platform. Mol Pharm 10(1):59–68. doi:10.1021/mp3003368

    CAS  PubMed  Google Scholar 

  • Galvez N, Sanchez P, Dominguez-Vera JM (2005) Preparation of Cu and CuFe prussian blue derivative nanoparticles using the apoferritin cavity as nanoreactor. Dalton T 15:2492–2494. doi:10.1039/B506290j

    Google Scholar 

  • Galvez N, Valero E, Dominguez-Vera JM, Masciocchi N, Guagliardi A, Clemente-Leon M, Coronado E (2010) Structural and magnetic characterization of Pd nanoparticles encapsulated in apoferritin. Nanotechnology 21(27):274017. doi:10.1088/0957-4484/21/27/274017

    PubMed  Google Scholar 

  • Gleiter S, Lilie H (2001) Coupling of antibodies via protein Z on modified polyoma virus-like particles. Protein Sci 10(2):434–444. doi:10.1110/ps.31101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Act 1275:161–203

    Google Scholar 

  • Hayashi K, Nakamura M, Sakamoto W, Yogo T, Miki H, Ozaki S, Abe M, Matsumoto T, Ishimura K (2013) Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics 3(6):366–376. doi: thnov03p0366 [pii] 10.7150/thno.5860

  • Howell M, Wang C, Mahmoud A, Hellermann G, Mohapatra SS, Mohapatra S (2013) Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: perspectives and challenges for use in lung diseases. Drug Deliv Transl Res 3(4):352–363. doi:10.1007/s13346-013-0132-4

    CAS  PubMed  Google Scholar 

  • Howlader N, Ries LA, Mariotto AB, Reichman ME, Ruhl J, Cronin KA (2010) Improved estimates of cancer-specific survival rates from population-based data. J Natl Cancer Inst 102(20):1584–1598. doi: djq366 [pii] 10.1093/jnci/djq366

  • Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, Zhang X, Jin S, Gan Y, Wang PC, He S, Liang XJ (2012) Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 6(5):4483–4493. doi:10.1021/nn301282m

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang JH, Lee S, Kim E, Kim JS, Lee CH, Ahn IS, Jang JH (2011) Heparin-coated superparamagnetic nanoparticle-mediated adeno-associated virus delivery for enhancing cellular transduction. Int J Pharmaceut 421(2):397–404. doi:10.1016/j.ijpharm.2011.10.019

    CAS  Google Scholar 

  • Inoue I, Zheng B, Watanabe K, Ishikawa Y, Shiba K, Yasueda H, Uraoka Y, Yamashita I (2011) A novel bifunctional protein supramolecule for construction of carbon nanotube-titanium hybrid material. Chem Commun (Camb) 47(47):12649–12651. doi:10.1039/c1cc15221a

    CAS  Google Scholar 

  • Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11(17–18):812–818. doi:10.1016/j.drudis.2006.07.005

    CAS  PubMed  Google Scholar 

  • Jeong GH, Yamazaki A, Suzuki S, Yoshimura H, Kobayashi Y, Homma Y (2005) Cobalt-filled apoferritin for suspended single-walled carbon nanotube growth with narrow diameter distribution. J Am Chem Soc 127(23):8238–8239. doi:10.1021/ja0505144

    CAS  PubMed  Google Scholar 

  • Jung B, Anvari B (2013) Virus-mimicking optical nanomaterials: near infrared absorption and fluorescence characteristics and physical stability in biological environments. ACS Appl Mater Interfaces 5(15):7492–7500. doi:10.1021/am401800w

    CAS  PubMed  Google Scholar 

  • Kaiser CR, Flenniken ML, Gillitzer E, Harmsen AL, Harmsen AG, Jutila MA, Douglas T, Young MJ (2007) Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo. Int J Nanomed 2(4):715–733

    CAS  Google Scholar 

  • Kang HJ, Kang YJ, Lee YM, Shin HH, Chung SJ, Kang S (2012) Developing an antibody-binding protein cage as a molecular recognition drug modular nanoplatform. Biomaterials 33(21):5423–5430. doi:10.1016/j.biomaterials.2012.03.055

    CAS  PubMed  Google Scholar 

  • Kasyutich O, Ilari A, Fiorillo A, Tatchev D, Hoell A, Ceci P (2010) Silver ion incorporation and nanoparticle formation inside the cavity of pyrococcus furiosus ferritin: structural and size-distribution analyses. J Am Chem Soc 132(10):3621–3627. doi:10.1021/Ja910918b

    CAS  PubMed  Google Scholar 

  • Kateb B, Chiu K, Black KL, Yamamoto V, Khalsa B, Ljubimova JY, Ding H, Patil R, Portilla-Arias JA, Modo M, Moore DF, Farahani K, Okun MS, Prakash N, Neman J, Ahdoot D, Grundfest W, Nikzad S, Heiss JD (2011) Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy? Neuroimage 54:S106–S124. doi:10.1016/j.neuroimage.2010.01.105

    PubMed Central  PubMed  Google Scholar 

  • Kitagawa T, Kosuge H, Uchida M, Dua MM, Iida Y, Dalman RL, Douglas T, McConnell MV (2012) RGD-conjugated human ferritin nanoparticles for imaging vascular inflammation and angiogenesis in experimental carotid and aortic disease. Mol Imaging Biol 14(3):315–324. doi:10.1007/s11307-011-0495-1

    PubMed Central  PubMed  Google Scholar 

  • Kostiainen MA, Ceci P, Fornara M, Hiekkataipale P, Kasyutich O, Nolte RJ, Cornelissen JJ, Desautels RD, van Lierop J (2011) Hierarchical self-assembly and optical disassembly for controlled switching of magnetoferritin nanoparticle magnetism. ACS Nano 5(8):6394–6402. doi:10.1021/nn201571y

    CAS  PubMed  Google Scholar 

  • Kostiainen MA, Hiekkataipale P, Laiho A, Lemieux V, Seitsonen J, Ruokolainen J, Ceci P (2013) Electrostatic assembly of binary nanoparticle superlattices using protein cages. Nat Nanotechnol 8(1):52–56. doi: nnano.2012.220 [pii] 10.1038/nnano.2012.220

  • Kotagiri N, Lee JS, Kim JW (2013) Selective pathogen targeting and macrophage evading carbon nanotubes through dextran sulfate coating and pegylation for photothermal theranostics. J Biomed Nanotechnol 9(6):1008–1016. doi:10.1166/jbn.2013.1531

    CAS  PubMed  Google Scholar 

  • Kwon C, Kang YJ, Jeon S, Jung S, Hong SY, Kang S (2012) Development of protein-cage-based delivery nanoplatforms by polyvalently displaying beta-cyclodextrins on the surface of ferritins through copper(I)-catalyzed azide/alkyne cycloaddition. Macromol Biosci 12(11):1452–1458. doi:10.1002/mabi.201200178

    CAS  PubMed  Google Scholar 

  • Larocca D, Burg MA, Jensen-Pergakes K, Ravey EP, Gonzalez AM, Baird A (2002) Evolving phage vectors for cell targeted gene delivery. Curr Pharm Biotechnol 3(1):45–57

    CAS  PubMed  Google Scholar 

  • Lau JL, Baksh MM, Fiedler JD, Brown SD, Kussrow A, Bornhop DJ, Ordoukhanian P, Finn MG (2011) Evolution and protein packaging of small-molecule RNA aptamers. ACS Nano 5(10):7722–7729. doi:10.1021/Nn2006927

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee LA, Wang Q (2006) Adaptations of nanoscale viruses and other protein cages for medical applications. Nanomedicine-UK 2(3):137–149. doi: S1549-9634(06)00107-9 [pii] 10.1016/j.nano.2006.07.009

    CAS  Google Scholar 

  • Li K, Zhang ZP, Luo M, Yu X, Han Y, Wei HP, Cui ZQ, Zhang XE (2012a) Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells. Nanoscale 4(1):188–193. doi:10.1039/C1nr11132a

    CAS  PubMed  Google Scholar 

  • Li L, Fang CJ, Ryan JC, Niemi EC, Lebron JA, Bjorkman PJ, Arase H, Torti FM, Torti SV, Nakamura MC, Seaman WE (2010) Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci USA 107(8):3505–3510. doi:10.1073/pnas.0913192107 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Qiu LH, Zhu P, Tao XY, Imanaka T, Zhao J, Huang YG, Tu YP, Cao XN (2012b) Epidermal growth factor-ferritin H-chain protein nanoparticles for tumor active targeting. Small 8(16):2505–2514. doi:10.1002/smll.201200066

    CAS  PubMed  Google Scholar 

  • Lin X, Xie J, Niu G, Zhang F, Gao H, Yang M, Quan Q, Aronova MA, Zhang G, Lee S, Leapman R, Chen X (2011) Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett 11(2):814–819. doi:10.1021/nl104141g

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu X, Thompson JR, Perry KL (2012) Encapsidation of DNA, a protein and a fluorophore into virus-like particles by the capsid protein of cucumber mosaic virus. J Gen Virol 93(Pt 5):1120–1126. doi:10.1099/vir.0.040170-0 vir.0.040170-0[pii]

    CAS  PubMed  Google Scholar 

  • Ma-Ham AH, Wu H, Wang J, Kang XH, Zhang YY, Lin YH (2011) Apoferritin-based nanomedicine platform for drug delivery: equilibrium binding study of daunomycin with DNA. J Mater Chem 21(24):8700–8708. doi:10.1039/C0jm04321d

    CAS  Google Scholar 

  • Makino A, Harada H, Okada T, Kimura H, Amano H, Saji H, Hiraoka M, Kimura S (2011) Effective encapsulation of a new cationic gadolinium chelate into apoferritin and its evaluation as an MRI contrast agent. Nanomed-Nanotechnol 7(5):638–646. doi:10.1016/j.nano.2011.01.015

    CAS  Google Scholar 

  • Manchester M, Singh P (2006) Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv Drug Deliv Rev 58(14):1505–1522. doi:10.1016/j.addr.2006.09.014 S0169-409X(06)00176-1[pii]

    CAS  PubMed  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  PubMed  Google Scholar 

  • McDonald DM, Thurston G, Baluk P (1999) Endothelial gaps as sites for plasma leakage in inflammation. Microcirculation 6(1):7–22. doi:10.1038/sj.mn.7300053

    CAS  PubMed  Google Scholar 

  • Medina-Kauwe LK (2013) Development of adenovirus capsid proteins for targeted therapeutic delivery. Ther Deliv 4(2):267–277. doi:10.4155/tde.12.155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miao Y, Quinn TP (2008) Peptide-targeted radionuclide therapy for melanoma. Crit Rev Oncol Hematol 67(3):213–228. doi:10.1016/j.critrevonc.2008.02.006 S1040-8428(08)00046-2[pii]

    PubMed Central  PubMed  Google Scholar 

  • Miermont A, Barnhill H, Strable E, Lu X, Wall KA, Wang Q, Finn MG, Huang X (2008) Cowpea mosaic virus capsid: a promising carrier for the development of carbohydrate based antitumor vaccines. Chemistry 14(16):4939–4947. doi:10.1002/chem.200800203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minten IJ, Hendriks LJ, Nolte RJ, Cornelissen JJ (2009) Controlled encapsulation of multiple proteins in virus capsids. J Am Chem Soc 131(49):17771–17773. doi:10.1021/ja907843s

    CAS  PubMed  Google Scholar 

  • Minten IJ, Wilke KDM, Hendriks LJA, van Hest JCM, Nolte RJM, Cornelissen JJLM (2011) Metal-ion-induced formation and stabilization of protein cages based on the cowpea chlorotic mottle epidermal growth factor-ferritin h-chain protein nanoparticles for tumor active targetingvirus. Small 7(7):911–919. doi:10.1002/smll.201001777

    CAS  PubMed  Google Scholar 

  • Nagy JA, Dvorak AM, Dvorak HF (2012) Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harb Perspect Med 2(2):a006544. doi:10.1101/cshperspect.a006544 a006544[pii]

    PubMed Central  PubMed  Google Scholar 

  • Oda M, Yokomori H, Han JY (2003) Regulatory mechanisms of hepatic microcirculation. Clin Hemorheol Microcirc 29(3–4):167–182

    CAS  PubMed  Google Scholar 

  • Okuda M, Kobayashi Y, Suzuki K, Sonoda K, Kondoh T, Wagawa A, Kondo A, Yoshimura H (2005) Self-organized inorganic nanoparticle arrays on protein lattices. Nano Lett 5(5):991–993. doi:10.1021/nl050556q

    CAS  PubMed  Google Scholar 

  • Pokorski JK, Hovlid ML, Finn MG (2011) Cell targeting with hybrid Qbeta virus-like particles displaying epidermal growth factor. Chembiochem 12(16):2441–2447. doi:10.1002/cbic.201100469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prastaro A, Ceci P, Chiancone E, Boffi A, Cirilli R, Colone M, Fabrizi G, Stringaro A, Cacchi S (2009) Suzuki-Miyaura cross-coupling catalyzed by protein-stabilized palladium nanoparticles under aerobic conditions in water: application to a one-pot chemoenzymatic enantioselective synthesis of chiral biaryl alcohols. Green Chem 11(12):1929–1932. doi:10.1039/B915184b

    CAS  Google Scholar 

  • Rhee JK, Hovlid M, Fiedler JD, Brown SD, Manzenrieder F, Kitagishi H, Nycholat C, Paulson JC, Finn MG (2011) Colorful virus-like particles: fluorescent protein packaging by the Q beta capsid. Biomacromolecules 12(11):3977–3981. doi:10.1021/Bm200983k

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romberg B, Hennink WE, Storm G (2008) Sheddable coatings for long-circulating nanoparticles. Pharm Res 25(1):55–71. doi:10.1007/s11095-007-9348-7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rossin R, Pan D, Qi K, Turner JL, Sun X, Wooley KL, Welch MJ (2005) 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation. J Nucl Med 46(7):1210–1218 46/7/1210[pii]

    PubMed  Google Scholar 

  • Sakhrani NM, Padh H (2013) Organelle targeting: third level of drug targeting. Drug Des Devel Ther 7:585–599. doi: S45614 dddt-7-585 [pii] 10.2147/DDDT

  • Sakurai H, Kawabata K, Sakurai F, Nakagawa S, Mizuguchi H (2008) Innate immune response induced by gene delivery vectors. Int J Pharmaceut 354(1–2):9–15. doi:10.1016/j.ijphann.2007.06.012

    CAS  Google Scholar 

  • Sanchez P, Valero E, Galvez N, Dominguez-Vera JM, Marinone M, Poletti G, Corti M, Lascialfari A (2009) MRI relaxation properties of water-soluble apoferritin-encapsulated gadolinium oxide-hydroxide nanoparticles. Dalton Trans 5:800–804. doi:10.1039/b809645g

    PubMed  Google Scholar 

  • Sant S, Poulin S, Hildgen P (2008) Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. J Biomed Mater Res A 87(4):885–895. doi:10.1002/jbm.a.31800

    PubMed  Google Scholar 

  • Schlapschy M, Binder U, Borger C, Theobald I, Wachinger K, Kisling S, Haller D, Skerra A (2013) PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng Des Sel 26(8):489–501. doi: 10.1093/protein/gzt023 gzt023[pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma A, Madhunapantula SV, Robertson GP (2012) Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opin Drug Met 8(1):47–69. doi:10.1517/17425255.2012.637916

    CAS  Google Scholar 

  • Simsek E, Kilic MA (2005) Magic ferritin: a novel chemotherapeutic encapsulation bullet. J Magn Magn Mater 293(1):509–513. doi:10.1016/j.jmmm.2005.01.066

    CAS  Google Scholar 

  • Singh P, Prasuhn D, Yeh RM, Destito G, Rae CS, Osborn K, Finn MG, Manchester M (2007) Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. J Controlled Release 120(1–2):41–50. doi:10.1016/j.jconrel.2007.04.003

    CAS  Google Scholar 

  • Singh R, Kostarelos K (2009) Designer adenoviruses for nanomedicine and nanodiagnostics. Trends Biotechnol 27(4):220–229. doi:10.1016/j.tibtech.2009.01.003

    CAS  PubMed  Google Scholar 

  • Snijder J, Ivanovska IL, Baclayon M, Roos WH, Wuite GJ (2012) Probing the impact of loading rate on the mechanical properties of viral nanoparticles. Micron 43(12):1343–1350. doi: S0968-4328(12)00134-5 [pii] 10.1016/j.micron.2012.04.011

  • Steinmetz NF, Lin T, Lomonossoff GP, Johnson JE (2009) Structure-based engineering of an icosahedral virus for nanomedicine and nanotechnology. Curr Top Microbiol Immunol 327:23–58

    CAS  PubMed  Google Scholar 

  • Stubenrauch K, Gleiter S, Brinkmann U, Rudolph R, Lilie H (2001) Conjugation of an antibody Fv fragment to a virus coat protein: cell-specific targeting of recombinant polyoma-virus-like particles. Biochem J 356(Pt 3):867–873

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki M, Abe M, Ueno T, Abe S, Goto T, Toda Y, Akita T, Yamada Y, Watanabe Y (2009) Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in Apo-ferritin. Chem Commun 32:4871–4873

    Google Scholar 

  • Talekar M, Kendall J, Denny W, Garg S (2011) Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anticancer Drugs 22(10):949–962. doi:10.1097/CAD.0b013e32834a4554 00001813-201111000-00001 [pii]

    CAS  PubMed  Google Scholar 

  • Tegerstedt K, Franzen AV, Andreasson K, Joneberg J, Heidari S, Ramqvist T, Dalianis T (2005) Murine polyomavirus virus-like particles (VLPs) as vectors for gene and immune therapy and vaccines against viral infections and cancer. Anticancer Res 25(4):2601–2608

    CAS  PubMed  Google Scholar 

  • Terashima M, Uchida M, Kosuge H, Tsao PS, Young MJ, Conolly SM, Douglas T, McConnell MV (2011) Human ferritin cages for imaging vascular macrophages. Biomaterials 32(5):1430–1437. doi: S0142-9612(10)01184-1 [pii] 10.1016/j.biomaterials.2010.09.029

  • Thacker EE, Timares L, Matthews QL (2009) Strategies to overcome host immunity to adenovirus vectors in vaccine development. Expert Rev Vaccines 8(6):761–777. doi:10.1586/Erv.09.29

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tietze R, Lyer S, Durr S, Alexiou C (2012) Nanoparticles for cancer therapy using magnetic forces. Nanomedicine-UK 7(3):447–457. doi:10.2217/Nnm.12.10

    CAS  Google Scholar 

  • Toita R, Murata M, Tabata S, Abe K, Narahara S, Piao JS, Kang JH, Hashizume M (2012) Development of human hepatocellular carcinoma cell-targeted protein cages. Bioconjugate Chem 23(7):1494–1501. doi:10.1021/Bc300015f

    CAS  Google Scholar 

  • Tong GJ, Hsiao SC, Carrico ZM, Francis MB (2009) Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J Am Chem Soc 131(31):11174–11178. doi:10.1021/Ja903857f

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uchida M, Flenniken ML, Allen M, Willits DA, Crowley BE, Brumfield S, Willis AF, Jackiw L, Jutila M, Young MJ, Douglas T (2006) Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J Am Chem Soc 128(51):16626–16633. doi:10.1021/ja0655690

    CAS  PubMed  Google Scholar 

  • Uchida M, Kang S, Reichhardt C, Harlen K, Douglas T (2010) The ferritin superfamily: supramolecular templates for materials synthesis. Biochim Biophys Acta 8:834–845. doi: S0304-4165(09)00340-7 [pii] 10.1016/j.bbagen.2009.12.005

  • Uchida M, Terashima M, Cunningham CH, Suzuki Y, Willits DA, Willis AF, Yang PC, Tsao PS, McConnell MV, Young MJ, Douglas T (2008) A human ferritin iron oxide nano-composite magnetic resonance contrast agent. Magnet Reson Med 60(5):1073–1081. doi:10.1002/Mrm.21761

    CAS  Google Scholar 

  • Uchida M, Willits DA, Muller K, Willis AF, Jackiw L, Jutila M, Young MJ, Porter AE, Douglas T (2009) Intracellular distribution of macrophage targeting ferritin-iron oxide nanocomposite. Adv Mater 21(4):458. doi:10.1002/adma.200801209

    CAS  Google Scholar 

  • Vannucci L, Falvo E, Fornara M, Di Micco P, Benada O, Krizan J, Svoboda J, Hulikova-Capkova K, Morea V, Boffi A, Ceci P (2012) Selective targeting of melanoma by PEG-masked protein-based multifunctional nanoparticles. Int J Nanomed 7:1489–1509. doi:10.2147/IJN.S28242 ijn-7-1489[pii]

    CAS  Google Scholar 

  • Vannucci L, Falvo E, Failla CM, Carbo M, Fornara M, Canese R, Cecchetti S, Rajsiglova L, Stakheev D, Krizan J, Boffi A, Carpinelli G, Morea V, Ceci P (2014) In vivo targeting of cutaneous melanoma using an MSH-engineered human protein cage bearing fluorophore and MRI tracers. J Biomed Nanotechnol (in press)

    Google Scholar 

  • Varpness Z, Peters JW, Young M, Douglas T (2005) Biomimetic synthesis of a H-2 catalyst using a protein cage architecture. Nano Lett 5(11):2306–2309. doi:10.1021/Nl0517619

    CAS  PubMed  Google Scholar 

  • Wadajkar AS, Menon JU, Kadapure T, Tran RT, Yang J, Nguyen KT (2013) Design and application of magnetic-based theranostic nanoparticle systems. Recent Pat Biomed Eng 6(1):47–57. doi:10.2174/1874764711306010007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Chui WK, Ho PC (2011) Nanoparticulate delivery system targeted to tumor neovasculature for combined anticancer and antiangiogenesis therapy. Pharm Res-Dordr 28(3):585–596. doi:10.1007/s11095-010-0308-2

    Google Scholar 

  • Wen AM, Lee KL, Yildiz I, Bruckman MA, Shukla S, Steinmetz NF (2012) Viral nanoparticles for in vivo tumor imaging. J Vis Exp 69:e4352. doi:10.3791/4352 4352[pii]

    PubMed  Google Scholar 

  • Wilhelm S, Hirsch T, Patterson WM, Scheucher E, Mayr T, Wolfbeis OS (2013) Multicolor upconversion nanoparticles for protein conjugation. Theranostics 3(4):239–248. doi: thnov03p0239 [pii] 10.7150/thno.5113

  • Wong KKW, Douglas T, Gider S, Awschalom DD, Mann S (1998) Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin). Chem Mater 10(1):279–285. doi:10.1021/cm970421o

    CAS  Google Scholar 

  • Xiao Q, Zheng X, Bu W, Ge W, Zhang S, Chen F, Xing H, Ren Q, Fan W, Zhao K, Hua Y, Shi J (2013) A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J Am Chem Soc. doi:10.1021/ja404985w

    Google Scholar 

  • Xie J, Xu C, Kohler N, Hou Y, Sun S (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19(20):3163. doi:10.1002/adma.200701975

    CAS  Google Scholar 

  • Xing R, Wang X, Zhang C, Zhang Y, Wang Q, Yang Z, Guo Z (2009) Characterization and cellular uptake of platinum anticancer drugs encapsulated in apoferritin. J Inorg Biochem 103(7):1039–1044. doi: S0162-0134(09)00095-6 [pii] 10.1016/j.jinorgbio.2009.05.001

  • Yan F, Zhang Y, Kim KS, Yuan HK, Vo-Dinh T (2010) Cellular uptake and photodynamic activity of protein nanocages containing methylene blue photosensitizing drug. Photochem Photobiol 86(3):662–666. doi:10.1111/j.1751-1097.2009.00696.x

    CAS  PubMed  Google Scholar 

  • Yang Z, Wang X, Diao H, Zhang J, Li H, Sun H, Guo Z (2007) Encapsulation of platinum anticancer drugs by apoferritin. Chem Commun (Camb) 33:3453–3455. doi:10.1039/b705326f

    Google Scholar 

  • Yildiz I, Lee KL, Chen K, Shukla S, Steinmetz NF (2013) Infusion of imaging and therapeutic molecules into the plant virus-based carrier cowpea mosaic virus: cargo-loading and delivery. J Control Release 172:568. doi:10.1016/j.jconrel.2013.04.023 S0168-3659(13)00242-3[pii]

    CAS  PubMed  Google Scholar 

  • Yin ZJ, Nguyen HG, Chowdhury S, Bentley P, Bruckman MA, Miermont A, Gildersleeve JC, Wang Q, Huang XF (2012) Tobacco mosaic virus as a new carrier for tumor associated carbohydrate antigens. Bioconjugate Chem 23(8):1694–1703. doi:10.1021/Bc300244a

    CAS  Google Scholar 

  • Yoon HY, Saravanakumar G, Heo R, Choi SH, Song IC, Han MH, Kim K, Park JH, Choi K, Kwon IC, Park K (2012) Hydrotropic magnetic micelles for combined magnetic resonance imaging and cancer therapy. J Control Release 160(3):692–698. doi: S0168-3659(12)00253-2 [pii] 10.1016/j.jconrel.2012.04.012

  • Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2(1):3–44. doi:10.7150/thno.3463 thnov02p0003[pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, Cowger T, Chen X, Xie J (2013) RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano 7(6):4830–4837. doi:10.1021/nn305791q

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.C. thanks the Italian Association for Cancer Research (AIRC), Milan (IT) for funding under grant agreement No. MFAG10545, and the Italian Ministry of Economy and Finance for funding the Project “FaReBio di Qualità”. L.V. acknowledges RVO 61388971 (CZ), Fondazione Anna Villa e Felice Rusconi Fund (IT), ENI Czech Republic s.r.o. (CZ), Manghi Czech Republic s.r.o. Fund (CZ), Paul’s Bohemia Trading s.r.o. (CZ) and Torino-Praga Invest s.r.o (CZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Vannucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vannucci, L., Falvo, E., Ceci, P. (2014). Multifunctional Protein-Based Nanoparticles for Cancer Theranosis. In: Prokop, A., Iwasaki, Y., Harada, A. (eds) Intracellular Delivery II. Fundamental Biomedical Technologies, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8896-0_12

Download citation

Publish with us

Policies and ethics