Skip to main content

Basic Physics of Electrical Discharges

  • Chapter
  • First Online:
An Introduction to Lightning

Abstract

The main constituents of air in the Earth’s atmosphere are nitrogen (78 %), oxygen (20 %), noble gases (1 %), carbon dioxide (0.97 %), water vapor (0.03 %), and other trace gases. Because of the ionization of air by the high-energy radiation of cosmic rays and radioactive gases generated from the Earth, each cubic centimeter of air at ground level contains approximately ten free electrons. In general, air is a good insulator, and it can retain its insulating properties until the applied electric field exceeds approximately 3 × 106 V/m at standard atmospheric conditions (i.e., T = 293 K and P = 1 atm). When the background electric field exceeds this critical value, air is converted very rapidly into a conducting medium, making it possible for electrical currents to flow through it in the form of sparks. Let us now consider the basic processes that make possible the conversion of air from an insulator into a conductor and the different types of discharge that take place in air under various conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raether H (1939) Z Phys 112:464

    Article  Google Scholar 

  2. Meek JM (1940) Phys Rev 57:722

    Article  Google Scholar 

  3. Bazelyan EM, Raizer YP (1997) Spark discharge. CRC Press, New York

    Google Scholar 

  4. Marode E (1983) In: Kunhardt E, Larssen L (eds) The glow to arc transition, in electrical breakdown and discharges in gases. Plenum Press, New York

    Google Scholar 

  5. Marode E (1975) The Mechanism of Spark Breakdown in Air at Atmospheric Pressure between a Positive Point to Plane. J Appl Phys 46:2005–2020

    Article  Google Scholar 

  6. Les Renardiéres Group (1977) Positive discharges in long air gaps at Les Renardiéres-1975 results. Electra 53:31–153

    Google Scholar 

  7. Les Renardiéres Group (1981) Negative discharges in long air gaps at Les Renardiéres-1978 results. Electra 74:67–216

    Google Scholar 

  8. Gao L, Larsson A, Cooray V, Scuka V (2000) Simulation of streamer discharges as finitely conducting channels. IEEE Trans Dielectr Electr Insul 7(3):458–460

    Article  Google Scholar 

  9. Griffiths RF, Phelps CT (1976) The effects of air pressure and water vapour content on the propagation of positive corona streamers. Q J R Meteorol Soc 102:419–426

    Article  Google Scholar 

  10. Giffiths RF, Phelps CT (1976) The dependence of positive corona streamer propagation on air pressure and water vapour content. J Appl Phys 47:2929

    Article  Google Scholar 

  11. Paris L, Cortina R (1968) Switching and lightning impulse discharge characteristics of large air gaps and long insulation strings. IEEE Trans PAS-98:947–957

    Google Scholar 

  12. Becerra M, Cooray V (2006) A self-consistent upward leader propagation model. J Phys D Appl Phys 39:3708–3715

    Article  Google Scholar 

  13. Gallimberti I (1979) The mechanism of the long spark formation. J Phys 40(C7):193–250

    Google Scholar 

  14. Rizk F (1989) A model for switching impulse leader inception and breakdown of long air-gaps. IEEE Trans Power Deliv 4(1):596–603

    Article  Google Scholar 

  15. Biagi CJ, Uman MA, Hill JD, Jordan DM, Rakov VA, Dwyer J (2010) Observations of stepping mechanisms in a rocket-and-wire triggered lightning flash. J Geophys Res 115:D23215. doi:10.1029/2010JD014616

    Article  Google Scholar 

  16. Mazur V, Ruhnke L, Bondiou-Clergerie A, Lalande P (2000) Computer simulation of a downward negative stepped leader and its interaction with a grounded structure. J Geophys Res 105(D17):22361–22369

    Article  Google Scholar 

  17. Arevalo L, Cooray V (2011) Preliminary study on the modeling of negative leader discharges. J Phys D Appl Phys 44(31). doi:10.1088/0022-3727/44/31/315204

  18. Winckler JR, Lyons WA, Nelson TE, Nemzek RJ (1996) New high-resolution ground-based studies of sprites. J Geophys Res 101(D3):6997–7004

    Article  Google Scholar 

  19. Cooray V (2013) Mechanism of lightning flashes. In: Cooray V (ed) The lightning flash. IET Publishers, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cooray, V. (2015). Basic Physics of Electrical Discharges. In: An Introduction to Lightning. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8938-7_2

Download citation

Publish with us

Policies and ethics