Skip to main content

Targeting Mitochondria of Cancer Cells: Mechanisms and Compounds

  • Chapter
  • First Online:
Mitochondria: The Anti- cancer Target for the Third Millennium

Abstract

Mitochondria are being proposed and tested as plausible targets for cancer therapy. There are several reasons for this recent approach. Perhaps the most important one is the fact that mitochondria comprise potent inducers of apoptosis, therefore disruption of mitochondria with ensuing apoptotic cell death is a promising strategy for cancer therapy. Importantly, too, mitochondria of cancer cells differ from these organelles in normal cells, in particular in their altered bioenergetics, the former utilizing for their energetic needs aerobic glycolysis. Further, mitochondria of cancer cells are characterized by greater negative potential across the inner membrane, also contributing to the potential design and testing of cancer cell-selective compounds. Some of the agents that target mitochondria of cancer cells, based on their differences compared to mitochondria of normal cells, are currently undergoing pre-clinical and clinical testing, which gives hope to the potential establishment of efficient and selective anti-cancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achanta G, Sasaki R, Feng L, Carew JS, Lu W, Pelicano H, Keating MJ, Huang P (2005) Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma. EMBO J 24:3482–3492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akers LJ, Fang W, Levy AG, Franklin AR, Huang P, Zweidler-McKay PA (2011) Targeting glycolysis in leukemia: a novel inhibitor 3-BrOP in combination with rapamycin. Leuk Res 35:814–820

    CAS  PubMed  Google Scholar 

  • Antony ML, Kim SH, Singh SV (2012) Critical role of p53 upregulated modulator of apoptosis in benzyl isothiocyanate-induced apoptotic cell death. PLoS One 7:e32267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arbel N, Ben-Hail D, Shoshan-Barmatz V (2012) Mediation of the antiapoptotic activity of Bcl-xL protein upon interaction with VDAC1 protein. J Biol Chem 287(27):23152–23161

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arzoine L, Zilberberg N, Ben-Romano R, Shoshan-Barmatz V (2009) Voltage-dependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity. J Biol Chem 284:3946–3955

    CAS  PubMed  Google Scholar 

  • Bae YS, Oh H, Rhee SG, Yoo YD (2011) Regulation of reactive oxygen species generation in cell signaling. Mol Cells 32:491–509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bakhanashvili M, Grinberg S, Bonda E, Simon AJ, Moshitch-Moshkovitz S, Rahav G (2008) p53 in mitochondria enhances the accuracy of DNA synthesis. Cell Death Differ 15:1865–1874

    CAS  PubMed  Google Scholar 

  • Balinsky D, Platz CE, Lewis JW (1983) Isozyme patterns of normal, benign, and malignant human breast tissues. Cancer Res 43:5895–5901

    CAS  PubMed  Google Scholar 

  • Behrend L, Henderson G, Zwacka RM (2003) Reactive oxygen species in oncogenic transformation. Biochem Soc Trans 31:1441–1444

    CAS  PubMed  Google Scholar 

  • Bhaskar PT, Nogueira V, Patra KC, Jeon SM, Park Y, Robey RB, Hay N (2009) mTORC1 hyperactivity inhibits serum deprivation-induced apoptosis via increased hexokinase II and GLUT1 expression, sustained Mcl-1 expression, and glycogen synthase kinase 3beta inhibition. Mol Cell Biol 29:5136–5147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biasutto L, Dong LF, Zoratti M, Neuzil J (2010) Mitochondrially targeted anti-cancer agents. Mitochondrion 10:670–681

    CAS  PubMed  Google Scholar 

  • Biswas S, Dodwadkar NS, Sawant RR, Koshkaryev A, Torchilin VP (2011) Surface modification of liposomes with rhodamine-123-conjugated polymer results in enhanced mitochondrial targeting. J Drug Target 19:552–561

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blatt NB, Boitano AE, Lyssiotis CA, Opipari AW Jr, Glick GD (2009) Bz-423 superoxide signals B cell apoptosis via Mcl-1, Bak, and Bax. Biochem Pharmacol 78:966–973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    CAS  PubMed  Google Scholar 

  • Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25:4647–4662

    CAS  PubMed  Google Scholar 

  • Britten CD, Rowinsky EK, Baker SD, Weiss GR, Smith L, Stephenson J, Rothenberg M, Smetzer L, Cramer J, Collins W, Von Hoff DD, Eckhardt SG (2000) A phase I and pharmacokinetic study of the mitochondrial-specific rhodacyanine dye analog MKT 077. Clin Cancer Res 6:42–49

    CAS  PubMed  Google Scholar 

  • Brown KK, Cox AG, Hampton MB (2010) Mitochondrial respiratory chain involvement in peroxiredoxin 3 oxidation by phenethyl isothiocyanate and auranofin. FEBS Lett 584:1257–1262

    CAS  PubMed  Google Scholar 

  • Bruce JY, Eickhoff J, Pili R, Logan T, Carducci M, Arnott J, Treston A, Wilding G, Liu G (2012) A phase II study of 2-methoxyestradiol nanocrystal colloidal dispersion alone and in combination with sunitinib malate in patients with metastatic renal cell carcinoma progressing on sunitinib malate. Invest New Drugs 30:794–802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buzzai M, Bauer DE, Jones RG, Deberardinis RJ, Hatzivassiliou G, Elstrom RL, Thompson CB (2005) The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24:4165–4173

    CAS  PubMed  Google Scholar 

  • Cao W, Yacoub S, Shiverick KT, Namiki K, Sakai Y, Porvasnik S, Urbanek C, Rosser CJ (2008) Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation. Prostate 68:1223–1231

    CAS  PubMed  Google Scholar 

  • Carroll RE, Benya RV, Turgeon DK, Vareed S, Neuman M, Rodriguez L, Kakarala M, Carpenter PM, McLaren C, Meyskens FL Jr, Brenner DE (2011) Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res (Phila) 4:354–364

    CAS  Google Scholar 

  • Chen G, Izzo J, Demizu Y, Wang F, Guha S, Wu X, Hung MC, Ajani JA, Huang P (2009a) Different redox states in malignant and nonmalignant esophageal epithelial cells and differential cytotoxic responses to bile acid and honokiol. Antioxid Redox Signal 11:1083–1095

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Z, Zhang H, Lu W, Huang P (2009b) Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochim Biophys Acta 1787:553–560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen G, Wang F, Trachootham D, Huang P (2010) Preferential killing of cancer cells with mitochondrial dysfunction by natural compounds. Mitochondrion 10:614–625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen G, Chen Z, Hu Y, Huang P (2011) Inhibition of mitochondrial respiration and rapid depletion of mitochondrial glutathione by beta-phenethyl isothiocyanate: mechanisms for anti-leukemia activity. Antioxid Redox Signal 15:2911–2921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiaradonna F, Sacco E, Manzoni R, Giorgio M, Vanoni M, Alberghina L (2006) Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene 25:5391–5404

    CAS  PubMed  Google Scholar 

  • Clerkin JS, Naughton R, Quiney C, Cotter TG (2008) Mechanisms of ROS modulated cell survival during carcinogenesis. Cancer Lett 266:30–36

    CAS  PubMed  Google Scholar 

  • Cui X (2012) Reactive oxygen species: the Achilles’ heel of cancer cells? Antioxid Redox Signal 16:1212–1214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dang CV (2012) MYC on the path to cancer. Cell 149:22–35

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dang CV, Li F, Lee LA (2005) Could MYC induction of mitochondrial biogenesis be linked to ROS production and genomic instability? Cell Cycle 4:1465–1466

    CAS  PubMed  Google Scholar 

  • Davids MS, Letai A (2012) Targeting the B-cell lymphoma/leukemia 2 family in cancer. J Clin Oncol 30:3127–3135

    CAS  PubMed  Google Scholar 

  • DeBerardinis RJ, Thompson CB (2012) Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148:1132–1144

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    CAS  PubMed  Google Scholar 

  • Dell’Antone P (2009) Targets of 3-bromopyruvate, a new, energy depleting, anticancer agent. Med Chem 5:491–496

    PubMed  Google Scholar 

  • Delord JP, Bennouna J, Mourey L, Bougaret J, Brandely-Talbot M, Ferre P (2012) Vinflunine oral pharmacokinetics and absolute bioavailability of soft and hard gelatin capsules: results of two phase I trials. Clin Pharmacokinet 51:357–364

    CAS  PubMed  Google Scholar 

  • Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Djavaheri-Mergny M, Wietzerbin J, Besancon F (2003) 2-Methoxyestradiol induces apoptosis in Ewing sarcoma cells through mitochondrial hydrogen peroxide production. Oncogene 22:2558–2567

    CAS  PubMed  Google Scholar 

  • Dong LF, Jameson VJ, Tilly D, Cerny J, Mahdavian E, Marin-Hernandez A, Hernandez-Esquivel L, Rodriguez-Enriquez S, Stursa J, Witting PK, Stantic B, Rohlena J, Truksa J, Kluckova K, Dyason JC, Ledvina M, Salvatore BA, Moreno-Sanchez R, Coster MJ, Ralph SJ, Smith RA, Neuzil J (2011) Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem 286:3717–3728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dschietzig T, Bartsch C, Baumann G, Stangl K (2009) RXFP1-inactive relaxin activates human glucocorticoid receptor: further investigations into the relaxin-GR pathway. Regul Pept 154:77–84

    CAS  PubMed  Google Scholar 

  • Edelman MJ, Otterson G, Leach J, Malpass T, Salgia R, Jones D, Mody TD, Govindan R (2011) Multicenter phase II trial of Motexafin gadolinium and pemetrexed for second-line treatment in patients with non-small cell lung cancer. J Thorac Oncol 6:786–789

    PubMed  Google Scholar 

  • Elliott MA, Ford SJ, Prasad E, Dick LJ, Farmer H, Hogg PJ, Halbert GW (2012) Pharmaceutical development of the novel arsenical based cancer therapeutic GSAO for Phase I clinical trial. Int J Pharm 426:67–75

    CAS  PubMed  Google Scholar 

  • Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–3899

    CAS  PubMed  Google Scholar 

  • Esteva FJ, Moulder SL, Gonzalez-Angulo AM, Ensor J, Murray JL, Green MC, Koenig KB, Lee MH, Hortobagyi GN, Yeung SC (2013) Phase I trial of exemestane in combination with metformin and rosiglitazone in nondiabetic obese postmenopausal women with hormone receptor-positive metastatic breast cancer. Cancer Chemother Pharmacol 71(1):63–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43:143–181

    CAS  PubMed  Google Scholar 

  • Ferrin G, Linares CI, Muntane J (2011) Mitochondrial drug targets in cell death and cancer. Curr Pharm Des 17:2002–2016

    CAS  PubMed  Google Scholar 

  • Fogg VC, Lanning NJ, Mackeigan JP (2011) Mitochondria in cancer: at the crossroads of life and death. Chin J Cancer 30:526–539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fotopoulou C, Baumunk D, Schmidt SC, Schumacher G (2010) Additive growth inhibition after combined treatment of 2-methoxyestradiol and conventional chemotherapeutic agents in human pancreatic cancer cells. Anticancer Res 30:4619–4624

    CAS  PubMed  Google Scholar 

  • Fulda S, Vucic D (2012) Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 11:109–124

    CAS  PubMed  Google Scholar 

  • Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693

    CAS  PubMed  Google Scholar 

  • Ganapathy-Kanniappan S, Geschwind JF, Kunjithapatham R, Buijs M, Syed LH, Rao PP, Ota S, Kwak BK, Loffroy R, Vali M (2010a) 3-Bromopyruvate induces endoplasmic reticulum stress, overcomes autophagy and causes apoptosis in human HCC cell lines. Anticancer Res 30:923–935

    CAS  PubMed  Google Scholar 

  • Ganapathy-Kanniappan S, Vali M, Kunjithapatham R, Buijs M, Syed LH, Rao PP, Ota S, Kwak BK, Loffroy R, Geschwind JF (2010b) 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy. Curr Pharm Biotechnol 11:510–517

    CAS  PubMed  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    CAS  PubMed  Google Scholar 

  • Geschwind JF, Ko YH, Torbenson MS, Magee C, Pedersen PL (2002) Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res 62:3909–3913

    CAS  PubMed  Google Scholar 

  • Gimeno AL, Goldraij A, Gimeno MF, Santillan de Torres R (1976) Effects of oxamate, an inhibitor of lactate dahydrogenase, upon the spontaneous or oxytocin-induced motility and over pyruvate levels of uterine horns isolated from ovariectomized or estrus rats. Reproducción 3(1–2):5–14

    CAS  PubMed  Google Scholar 

  • Gogvadze V (2011) Targeting mitochondria in fighting cancer. Curr Pharm Des 17:4034–4046

    CAS  PubMed  Google Scholar 

  • Gogvadze V, Orrenius S, Zhivotovsky B (2006) Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta 1757:639–647

    CAS  PubMed  Google Scholar 

  • Gogvadze V, Orrenius S, Zhivotovsky B (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 18:165–173

    CAS  PubMed  Google Scholar 

  • Gorlach A, Bolling B, Holtermann G, Schwachofer J, Carlsson J, Acker H (1995) Changes in growth, po(2) and ph after exposure to oxamate – studies of 2 human tumor-cell lines growing as multicellular spheroids. Int J Oncol 7:831–839

    CAS  PubMed  Google Scholar 

  • Gottlieb E, Tomlinson IP (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5:857–866

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  PubMed  Google Scholar 

  • Harrison MR, Hahn NM, Pili R, Oh WK, Hammers H, Sweeney C, Kim K, Perlman S, Arnott J, Sidor C, Wilding G, Liu G (2011) A phase II study of 2-methoxyestradiol (2ME2) NanoCrystal(R) dispersion (NCD) in patients with taxane-refractory, metastatic castrate-resistant prostate cancer (CRPC). Invest New Drugs 29:1465–1474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heller A, Brockhoff G, Goepferich A (2012) Targeting drugs to mitochondria. Eur J Pharm Biopharm 82:1–18

    CAS  PubMed  Google Scholar 

  • Herr HW, Huffman JL, Huryk R, Heston WD, Melamed MR, Whitmore WF Jr (1988) Anticarcinoma activity of rhodamine 123 against a murine renal adenocarcinoma. Cancer Res 48:2061–2063

    CAS  PubMed  Google Scholar 

  • High LM, Szymanska B, Wilczynska-Kalak U, Barber N, O’Brien R, Khaw SL, Vikstrom IB, Roberts AW, Lock RB (2010) The Bcl-2 homology domain 3 mimetic ABT-737 targets the apoptotic machinery in acute lymphoblastic leukemia resulting in synergistic in vitro and in vivo interactions with established drugs. Mol Pharmacol 77:483–494

    CAS  PubMed  Google Scholar 

  • Hikita H, Takehara T, Shimizu S, Kodama T, Shigekawa M, Iwase K, Hosui A, Miyagi T, Tatsumi T, Ishida H, Li W, Kanto T, Hiramatsu N, Hayashi N (2010) The Bcl-xL inhibitor, ABT-737, efficiently induces apoptosis and suppresses growth of hepatoma cells in combination with sorafenib. Hepatology 52:1310–1321

    CAS  PubMed  Google Scholar 

  • Holschneider CH, Johnson MT, Knox RM, Rezai A, Ryan WJ, Montz FJ (1994) Bullatacin–in vivo and in vitro experience in an ovarian cancer model. Cancer Chemother Pharmacol 34:166–170

    CAS  PubMed  Google Scholar 

  • Hsu TI, Wang MC, Chen SY, Huang ST, Yeh YM, Su WC, Chang WC, Hung JJ (2012) Betulinic Acid Decreases Specificity Protein 1 (Sp1) Level via Increasing the Sumoylation of Sp1 to Inhibit Lung Cancer Growth. Mol Pharmacol 82:1115–1128

    CAS  PubMed  Google Scholar 

  • Ihrlund LS, Hernlund E, Khan O, Shoshan MC (2008) 3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs. Mol Oncol 2:94–101

    PubMed  Google Scholar 

  • Iland HJ, Bradstock K, Supple SG, Catalano A, Collins M, Hertzberg M, Browett P, Grigg A, Firkin F, Hugman A, Reynolds J, Di Iulio J, Tiley C, Taylor K, Filshie R, Seldon M, Taper J, Szer J, Moore J, Bashford J, Seymour JF (2012) All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood 120:1570–1580, quiz 1752

    CAS  PubMed  Google Scholar 

  • Irwin ME, Rivera-Del Valle N, Chandra J (2013) Redox control of leukemia: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 18(11):1349–1383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Isaev NK, Stelmashook EV, Dirnagl U, Plotnikov EY, Kuvshinova EA, Zorov DB (2008) Mitochondrial free radical production induced by glucose deprivation in cerebellar granule neurons. Biochemistry (Mosc) 73:149–155

    CAS  Google Scholar 

  • James R, Ahmed F, Cunnick G (2012) The efficacy of tamoxifen in the treatment of primary gynecomastia: an observational study of tamoxifen versus observation alone. Breast J 18:620–621

    PubMed  Google Scholar 

  • Janssen AM, Bosman CB, Sier CF, Griffioen G, Kubben FJ, Lamers CB, van Krieken JH, van de Velde CJ, Verspaget HW (1998) Superoxide dismutases in relation to the overall survival of colorectal cancer patients. Br J Cancer 78:1051–1057

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, Stamler JS, Rhee SG, van der Vliet A (2008) Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 45:1–17

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones LW, Narayan KS, Shapiro CE, Sweatman TW (2005) Rhodamine-123: therapy for hormone refractory prostate cancer, a phase I clinical trial. J Chemother 17:435–440

    CAS  PubMed  Google Scholar 

  • Kashtan H, Konikoff F, Haddad R, Skornick Y (1999) Photodynamic therapy of cancer of the esophagus using systemic aminolevulinic acid and a non laser light source: a phase I/II study. Gastrointest Endosc 49:760–764

    CAS  PubMed  Google Scholar 

  • Kc S, Carcamo JM, Golde DW (2005) Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. FASEB J 19:1657–1667

    PubMed  Google Scholar 

  • Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S, Deng X, Zhai D, Shi YX, Sneed T, Verhaegen M, Soengas M, Ruvolo VR, McQueen T, Schober WD, Watt JC, Jiffar T, Ling X, Marini FC, Harris D, Dietrich M, Estrov Z, McCubrey J, May WS, Reed JC, Andreeff M (2006) Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10:375–388

    CAS  PubMed  Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337

    CAS  PubMed  Google Scholar 

  • Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482

    CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    CAS  PubMed  Google Scholar 

  • Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK (2008) Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 68:1777–1785

    CAS  PubMed  Google Scholar 

  • LaCasse EC, Cherton-Horvat GG, Hewitt KE, Jerome LJ, Morris SJ, Kandimalla ER, Yu D, Wang H, Wang W, Zhang R, Agrawal S, Gillard JW, Durkin JP (2006) Preclinical characterization of AEG35156/GEM 640, a second-generation antisense oligonucleotide targeting X-linked inhibitor of apoptosis. Clin Cancer Res 12:5231–5241

    CAS  PubMed  Google Scholar 

  • Lampidis TJ, Bernal SD, Summerhayes IC, Chen LB (1983) Selective toxicity of rhodamine 123 in carcinoma cells in vitro. Cancer Res 43:716–720

    CAS  PubMed  Google Scholar 

  • Lampidis TJ, Munck JN, Krishan A, Tapiero H (1985) Reversal of resistance to rhodamine 123 in adriamycin-resistant Friend leukemia cells. Cancer Res 45:2626–2631

    CAS  PubMed  Google Scholar 

  • Lee SW, Lee JT, Lee MG, Lee HW, Ahn SJ, Lee YJ, Lee YL, Yoo J, Ahn BC, Ha JH (2009) In vitro antiproliferative characteristics of flavonoids and diazepam on SNU-C4 colorectal adenocarcinoma cells. J Nat Med 63:124–129

    CAS  PubMed  Google Scholar 

  • Lengfelder E, Hofmann WK, Nowak D (2012) Impact of arsenic trioxide in the treatment of acute promyelocytic leukemia. Leukemia 26:433–442

    CAS  PubMed  Google Scholar 

  • Lewis BC, Prescott JE, Campbell SE, Shim H, Orlowski RZ, Dang CV (2000) Tumor induction by the c-Myc target genes rcl and lactate dehydrogenase A. Cancer Res 60:6178–6183

    CAS  PubMed  Google Scholar 

  • Li Y, Liu J, Liu X, Xing K, Wang Y, Li F, Yao L (2006) Resveratrol-induced cell inhibition of growth and apoptosis in MCF7 human breast cancer cells are associated with modulation of phosphorylated Akt and caspase-9. Appl Biochem Biotechnol 135:181–192

    CAS  PubMed  Google Scholar 

  • Li N, Song Y, Zhou J, Fang B (2012) Arsenic trioxide improves hematopoiesis in refractory severe aplastic anemia. J Hematol Oncol 5:61

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lifson JD, Rossio JL, Piatak M Jr, Bess J Jr, Chertova E, Schneider DK, Coalter VJ, Poore B, Kiser RF, Imming RJ, Scarzello AJ, Henderson LE, Alvord WG, Hirsch VM, Benveniste RE, Arthur LO (2004) Evaluation of the safety, immunogenicity, and protective efficacy of whole inactivated simian immunodeficiency virus (SIV) vaccines with conformationally and functionally intact envelope glycoproteins. AIDS Res Hum Retroviruses 20:772–787

    CAS  PubMed  Google Scholar 

  • Lim D, Morgan RJ Jr, Akman S, Margolin K, Carr BI, Leong L, Odujinrin O, Doroshow JH (2005) Phase I trial of menadiol diphosphate (vitamin K3) in advanced malignancy. Invest New Drugs 23:235–239

    PubMed  Google Scholar 

  • Low IC, Kang J, Pervaiz S (2011) Bcl-2: a prime regulator of mitochondrial redox metabolism in cancer cells. Antioxid Redox Signal 15:2975–2987

    CAS  PubMed  Google Scholar 

  • Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy P, Mahdi AA (2011) Regulation of glucose metabolism by p53: emerging new roles for the tumor suppressor. Oncotarget 2:948–957

    PubMed Central  PubMed  Google Scholar 

  • Maddocks OD, Vousden KH (2011) Metabolic regulation by p53. J Mol Med (Berl) 89:237–245

    CAS  Google Scholar 

  • Maher JC, Krishan A, Lampidis TJ (2004) Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer Chemother Pharmacol 53:116–122

    CAS  PubMed  Google Scholar 

  • Martens GA, Cai Y, Hinke S, Stange G, Van de Casteele M, Pipeleers D (2005) Glucose suppresses superoxide generation in metabolically responsive pancreatic beta cells. J Biol Chem 280:20389–20396

    CAS  PubMed  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2010) The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta 1797:1225–1230

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCommis KS, Baines CP (2012) The role of VDAC in cell death: friend or foe? Biochim Biophys Acta 1818:1444–1450

    CAS  PubMed Central  PubMed  Google Scholar 

  • McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J, Halim ND, Wu H, Schell MJ, Tsang TM, Teahan O, Zhou S, Califano JA, Jeoung NH, Harris RA, Verma A (2008) Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 283:22700–22708

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michelakis ED, Webster L, Mackey JR (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 99:989–994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Millard M, Pathania D, Shabaik Y, Taheri L, Deng J, Neamati N (2010) Preclinical evaluation of novel triphenylphosphonium salts with broad-spectrum activity. PLoS One 5

    Google Scholar 

  • Miyadera H, Shiomi K, Ui H, Yamaguchi Y, Masuma R, Tomoda H, Miyoshi H, Osanai A, Kita K, Omura S (2003) Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase). Proc Natl Acad Sci U S A 100:473–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moiseeva O, Bourdeau V, Roux A, Deschenes-Simard X, Ferbeyre G (2009) Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol 29:4495–4507

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moreno-Sanchez R, Saavedra E, Rodriguez-Enriquez S, Gallardo-Perez JC, Quezada H, Westerhoff HV (2010) Metabolic control analysis indicates a change of strategy in the treatment of cancer. Mitochondrion 10:626–639

    CAS  PubMed  Google Scholar 

  • Morrish F, Neretti N, Sedivy JM, Hockenbery DM (2008) The oncogene c-Myc coordinates regulation of metabolic networks to enable rapid cell cycle entry. Cell Cycle 7:1054–1066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neuzil J, Dyason JC, Freeman R, Dong LF, Prochazka L, Wang XF, Scheffler I, Ralph SJ (2007) Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. J Bioenerg Biomembr 39:65–72

    CAS  PubMed  Google Scholar 

  • Oliveira PJ, Wallace KB (2006) Depletion of adenine nucleotide translocator protein in heart mitochondria from doxorubicin-treated rats–relevance for mitochondrial dysfunction. Toxicology 220:160–168

    CAS  PubMed  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    CAS  PubMed  Google Scholar 

  • Paik PK, Rudin CM, Pietanza MC, Brown A, Rizvi NA, Takebe N, Travis W, James L, Ginsberg MS, Juergens R, Markus S, Tyson L, Subzwari S, Kris MG, Krug LM (2011) A phase II study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in relapsed small cell lung cancer. Lung Cancer 74:481–485

    PubMed Central  PubMed  Google Scholar 

  • Pani G, Giannoni E, Galeotti T, Chiarugi P (2009) Redox-based escape mechanism from death: the cancer lesson. Antioxid Redox Signal 11:2791–2806

    CAS  PubMed  Google Scholar 

  • Parikh SA, Kantarjian H, Schimmer A, Walsh W, Asatiani E, El-Shami K, Winton E, Verstovsek S (2010) Phase II study of obatoclax mesylate (GX15-070), a small-molecule BCL-2 family antagonist, for patients with myelofibrosis. Clin Lymphoma Myeloma Leuk 10:285–289

    CAS  PubMed  Google Scholar 

  • Patel S, Chiplunkar S (2007) Role of cyclooxygenase-2 in tumor progression and immune regulation in lung cancer. Indian J Biochem Biophys 44:419–428

    CAS  PubMed  Google Scholar 

  • Pathania D, Millard M, Neamati N (2009) Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv Drug Deliv Rev 61:1250–1275

    CAS  PubMed  Google Scholar 

  • Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH (2002) Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 1555:14–20

    CAS  PubMed  Google Scholar 

  • Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W, Keating MJ, Huang P (2003) Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278:37832–37839

    CAS  PubMed  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    CAS  PubMed  Google Scholar 

  • Pervaiz S, Clement MV (2004) Tumor intracellular redox status and drug resistance–serendipity or a causal relationship? Curr Pharm Des 10:1969–1977

    CAS  PubMed  Google Scholar 

  • Plymate SR, Haugk KH, Sprenger CC, Nelson PS, Tennant MK, Zhang Y, Oberley LW, Zhong W, Drivdahl R, Oberley TD (2003) Increased manganese superoxide dismutase (SOD-2) is part of the mechanism for prostate tumor suppression by Mac25/insulin-like growth factor binding-protein-related protein-1. Oncogene 22:1024–1034

    CAS  PubMed  Google Scholar 

  • Powell BL, Moser B, Stock W, Gallagher RE, Willman CL, Stone RM, Rowe JM, Coutre S, Feusner JH, Gregory J, Couban S, Appelbaum FR, Tallman MS, Larson RA (2010) Arsenic trioxide improves event-free and overall survival for adults with acute promyelocytic leukemia: North American Leukemia Intergroup Study C9710. Blood 116:3751–3757

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radisky DC (2005) Epithelial-mesenchymal transition. J Cell Sci 118:4325–4326

    CAS  PubMed  Google Scholar 

  • Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Saavedra E, Moreno-Sanchez R (2010) The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation – why mitochondria are targets for cancer therapy. Mol Aspects Med 31:145–170

    CAS  PubMed  Google Scholar 

  • Ramanathan A, Wang C, Schreiber SL (2005) Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci U S A 102:5992–5997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ (2005) Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia 7:324–330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romero-Garcia S, Lopez-Gonzalez JS, Baez-Viveros JL, Aguilar-Cazares D, Prado-Garcia H (2011) Tumor cell metabolism: an integral view. Cancer Biol Ther 12:939–948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rudin CM, Hann CL, Garon EB, Ribeiro de Oliveira M, Bonomi PD, Camidge DR, Chu Q, Giaccone G, Khaira D, Ramalingam SS, Ranson MR, Dive C, McKeegan EM, Chyla BJ, Dowell BL, Chakravartty A, Nolan CE, Rudersdorf N, Busman TA, Mabry MH, Krivoshik AP, Humerickhouse RA, Shapiro GI, Gandhi L (2012) Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res 18:3163–3169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sahasrabudhe SR, Lai S, Pierce M, Clemens C, Venkat R, Rebentisch M, Senina A, Becklin R, Richards SK, Erkkila T, Robbins PB (2008) Selective in vitro and in vivo anti-tumor activity of PRLX 93936 in biological models of melanoma and ovarian cancer. J Clin Oncol ASCO Annu Meeting Proc (Post Meeting Ed) 26:14586

    Google Scholar 

  • Samper E, Morgado L, Estrada JC, Bernad A, Hubbard A, Cadenas S, Melov S (2009) Increase in mitochondrial biogenesis, oxidative stress, and glycolysis in murine lymphomas. Free Radic Biol Med 46:387–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez-Arago M, Cuezva JM (2011) The bioenergetic signature of isogenic colon cancer cells predicts the cell death response to treatment with 3-bromopyruvate, iodoacetate or 5-fluorouracil. J Transl Med 9:19

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santidrian AF, Cosialls AM, Coll-Mulet L, Iglesias-Serret D, de Frias M, Gonzalez-Girones DM, Campas C, Domingo A, Pons G, Gil J (2007) The potential anticancer agent PK11195 induces apoptosis irrespective of p53 and ATM status in chronic lymphocytic leukemia cells. Haematologica 92:1631–1638

    CAS  PubMed  Google Scholar 

  • Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, Chodosh LA (2007) Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol 9:493–505

    CAS  PubMed  Google Scholar 

  • Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E (2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 64:2627–2633

    CAS  PubMed  Google Scholar 

  • Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A (1996) Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271:32529–32537

    CAS  PubMed  Google Scholar 

  • Shanafelt TD, Call TG, Zent CS, LaPlant B, Bowen DA, Roos M, Secreto CR, Ghosh AK, Kabat BF, Lee MJ, Yang CS, Jelinek DF, Erlichman C, Kay NE (2009) Phase I trial of daily oral Polyphenon E in patients with asymptomatic Rai stage 0 to II chronic lymphocytic leukemia. J Clin Oncol 27:3808–3814

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shanafelt TD, Call TG, Zent CS, Leis JF, Laplant B, Bowen DA, Roos M, Laumann K, Ghosh AK, Lesnick C, Lee MJ, Yang CS, Jelinek DF, Erlichman C, Kay NE (2013) Phase 2 trial of daily, oral polyphenon E in patients with asymptomatic, Rai stage 0 to II chronic lymphocytic leukemia. Cancer 119(2):363–370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen L, Sun X, Fu Z, Yang G, Li J, Yao L (2012) The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clin Cancer Res 18:1561–1567

    CAS  PubMed  Google Scholar 

  • Shoshan-Barmatz V, Zakar M, Rosenthal K, Abu-Hamad S (2009) Key regions of VDAC1 functioning in apoptosis induction and regulation by hexokinase. Biochim Biophys Acta 1787:421–430

    CAS  PubMed  Google Scholar 

  • Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 31:227–285

    CAS  PubMed  Google Scholar 

  • Simonin K, Brotin E, Dufort S, Dutoit S, Goux D, N’Diaye M, Denoyelle C, Gauduchon P, Poulain L (2009) Mcl-1 is an important determinant of the apoptotic response to the BH3-mimetic molecule HA14-1 in cisplatin-resistant ovarian carcinoma cells. Mol Cancer Ther 8:3162–3170

    CAS  PubMed  Google Scholar 

  • Smith DG, Magwere T, Burchill SA (2011) Oxidative stress and therapeutic opportunities: focus on the Ewing’s sarcoma family of tumors. Expert Rev Anticancer Ther 11:229–249

    PubMed  Google Scholar 

  • Smith RA, Hartley RC, Cocheme HM, Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33:341–352

    CAS  PubMed  Google Scholar 

  • Stacpoole PW, Kurtz TL, Han Z, Langaee T (2008) Role of dichloroacetate in the treatment of genetic mitochondrial diseases. Adv Drug Deliv Rev 60:1478–1487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steinberg P, Klingelhoffer A, Schafer A, Wust G, Weisse G, Oesch F, Eigenbrodt E (1999) Expression of pyruvate kinase M2 in preneoplastic hepatic foci of N-nitrosomorpholine-treated rats. Virchows Arch 434:213–220

    CAS  PubMed  Google Scholar 

  • Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10:1881–1896

    CAS  PubMed  Google Scholar 

  • Straten P, Andersen MH (2010) The anti-apoptotic members of the Bcl-2 family are attractive tumor-associated antigens. Oncotarget 1:239–245

    PubMed  Google Scholar 

  • Sullivan R, Pare GC, Frederiksen LJ, Semenza GL, Graham CH (2008) Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol Cancer Ther 7:1961–1973

    CAS  PubMed  Google Scholar 

  • Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y, Sugano S, Sato E, Nagao T, Yokote K, Tatsuno I, Prives C (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci U S A 107:7461–7466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    CAS  PubMed  Google Scholar 

  • Tajeddine N, Galluzzi L, Kepp O, Hangen E, Morselli E, Senovilla L, Araujo N, Pinna G, Larochette N, Zamzami N, Modjtahedi N, Harel-Bellan A, Kroemer G (2008) Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin-induced cell death. Oncogene 27:4221–4232

    CAS  PubMed  Google Scholar 

  • Tejeda M, Gaal D, Hullan L, Schwab R, Szokoloczi O, Keri G (2007) Antitumor activity of the somatostatin structural derivative (TT-232), against mouse and human melanoma tumor models. Anticancer Res 27:4015–4019

    CAS  PubMed  Google Scholar 

  • Thornburg JM, Nelson KK, Clem BF, Lane AN, Arumugam S, Simmons A, Eaton JW, Telang S, Chesney J (2008) Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res 10:R84

    PubMed Central  PubMed  Google Scholar 

  • Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10:241–252

    CAS  PubMed  Google Scholar 

  • Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008a) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trachootham D, Zhang H, Zhang W, Feng L, Du M, Zhou Y, Chen Z, Pelicano H, Plunkett W, Wierda WG, Keating MJ, Huang P (2008b) Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood 112:1912–1922

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

    CAS  PubMed  Google Scholar 

  • Van Poznak C, Seidman AD, Reidenberg MM, Moasser MM, Sklarin N, Van Zee K, Borgen P, Gollub M, Bacotti D, Yao TJ, Bloch R, Ligueros M, Sonenberg M, Norton L, Hudis C (2001) Oral gossypol in the treatment of patients with refractory metastatic breast cancer: a phase I/II clinical trial. Breast Cancer Res Treat 66:239–248

    PubMed  Google Scholar 

  • Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, Zobel K, Dynek JN, Elliott LO, Wallweber HJ, Flygare JA, Fairbrother WJ, Deshayes K, Dixit VM, Vucic D (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131:669–681

    CAS  PubMed  Google Scholar 

  • Vaux DL (2008) ABT-737, proving to be a great tool even before it is proven in the clinic. Cell Death Differ 15:807–808

    CAS  PubMed  Google Scholar 

  • Villablanca JG, London WB, Naranjo A, McGrady P, Ames MM, Reid JM, McGovern RM, Buhrow SA, Jackson H, Stranzinger E, Kitchen BJ, Sondel PM, Parisi MT, Shulkin B, Yanik GA, Cohn SL, Reynolds CP (2011) Phase II study of oral capsular 4-hydroxyphenylretinamide (4-HPR/fenretinide) in pediatric patients with refractory or recurrent neuroblastoma: a report from the Children’s Oncology Group. Clin Cancer Res 17:6858–6866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, Benetatos CA, Chunduru SK, Condon SM, McKinlay M, Brink R, Leverkus M, Tergaonkar V, Schneider P, Callus BA, Koentgen F, Vaux DL, Silke J (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131:682–693

    CAS  PubMed  Google Scholar 

  • Vucic D (2008) Targeting IAP (inhibitor of apoptosis) proteins for therapeutic intervention in tumors. Curr Cancer Drug Targets 8:110–117

    CAS  PubMed  Google Scholar 

  • Wallace DC, Fan W (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10:12–31

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang HC, Choudhary S (2011) Reactive oxygen species-mediated therapeutic control of bladder cancer. Nat Rev Urol 8:608–616

    CAS  PubMed  Google Scholar 

  • Wang L, Wu S, Ou G, Bi N, Li W, Ren H, Cao J, Liang J, Li J, Zhou Z, Lv J, Zhang X (2012) Randomized phase II study of concurrent cisplatin/etoposide or paclitaxel/carboplatin and thoracic radiotherapy in patients with stage III non-small cell lung cancer. Lung Cancer 77:89–96

    CAS  PubMed  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    CAS  PubMed  Google Scholar 

  • Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weinberg F, Chandel NS (2009) Mitochondrial metabolism and cancer. Ann N Y Acad Sci 1177:66–73

    CAS  PubMed  Google Scholar 

  • Wenner CE (2012) Targeting mitochondria as a therapeutic target in cancer. J Cell Physiol 227:450–456

    CAS  PubMed  Google Scholar 

  • Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, Thompson CB (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105:18782–18787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolvetang EJ, Johnson KL, Krauer K, Ralph SJ, Linnane AW (1994) Mitochondrial respiratory chain inhibitors induce apoptosis. FEBS Lett 339:40–44

    CAS  PubMed  Google Scholar 

  • Wu CH, Ho YS, Tsai CY, Wang YJ, Tseng H, Wei PL, Lee CH, Liu RS, Lin SY (2009) In vitro and in vivo study of phloretin-induced apoptosis in human liver cancer cells involving inhibition of type II glucose transporter. Int J Cancer 124:2210–2219

    CAS  PubMed  Google Scholar 

  • Yin XF, Chen J, Mao W, Wang YH, Chen MH (2012) A selective aryl hydrocarbon receptor modulator 3,3′-Diindolylmethane inhibits gastric cancer cell growth. J Exp Clin Cancer Res 31:46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan S, Wang F, Chen G, Zhang H, Feng L, Wang L, Colman H, Keating MJ, Li X, Xu RH, Wang J, Huang P (2013) Effective elimination of cancer stem cells by a novel drug combination strategy. Stem Cells 31:23–34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, Schmidt K, Willson JK, Markowitz S, Zhou S, Diaz LA Jr, Velculescu VE, Lengauer C, Kinzler KW, Vogelstein B, Papadopoulos N (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325:1555–1559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Trachootham D, Lu W, Carew J, Giles FJ, Keating MJ, Arlinghaus RB, Huang P (2008) Effective killing of Gleevec-resistant CML cells with T315I mutation by a natural compound PEITC through redox-mediated mechanism. Leukemia 22:1191–1199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang XD, Qin ZH, Wang J (2010) The role of p53 in cell metabolism. Acta Pharmacol Sin 31:1208–1212

    CAS  PubMed  Google Scholar 

  • Zhao Y, Liu Q, Wang X, Zhou L, Wang Q, Zhang Y (2011) Surface display of Aeromonas hydrophila GAPDH in attenuated Vibrio anguillarum to develop a Noval multivalent vector vaccine. Mar Biotechnol (NY) 13:963–970

    CAS  Google Scholar 

  • Zheng Y, Shi Y, Tian C, Jiang C, Jin H, Chen J, Almasan A, Tang H, Chen Q (2004) Essential role of the voltage-dependent anion channel (VDAC) in mitochondrial permeability transition pore opening and cytochrome c release induced by arsenic trioxide. Oncogene 23:1239–1247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou J, Du Y (2012) Acquisition of resistance of pancreatic cancer cells to 2-methoxyestradiol is associated with the upregulation of manganese superoxide dismutase. Mol Cancer Res 10:768–777

    CAS  PubMed  Google Scholar 

  • Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, Fodstad O, Riker AI, Kamarajugadda S, Lu J, Owen LB, Ledoux SP, Tan M (2010) Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer 9:33

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Chen or Peng Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, G., Pelicano, H., Ogasawara, M.A., Wang, F., Huang, P. (2014). Targeting Mitochondria of Cancer Cells: Mechanisms and Compounds. In: Neuzil, J., Pervaiz, S., Fulda, S. (eds) Mitochondria: The Anti- cancer Target for the Third Millennium. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8984-4_8

Download citation

Publish with us

Policies and ethics