Skip to main content

Thermal Energy Dissipation in Plants Under Unfavorable Soil Conditions

  • Chapter
  • First Online:
Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 40))

Summary

Unfavorable soil conditions in crops and natural habitats include limited availability of water and nutrients, presence of salts, as well as an excess of essential nutrients and heavy metals. When plants are exposed to such stresses, rates of photosynthetic carbon fixation decrease for a variety of reasons, while plants continue gathering sunlight. As a consequence of the resulting imbalance between light absorption and energy utilization, plants experience what the research community has termed photoinhibition, which is considered to be a reflection of either photoprotection mechanisms or photodamage. Data reported to date suggest that under unfavorable soil conditions, photoprotection mechanisms are far more important than photodamage. Plants under stress generally dissipate thermally, i.e., as heat, a large part of the light absorbed by photosystem II in a process mediated by ∆pH, xanthophyll pigments (particularly zeaxanthin and antheraxanthin), and the photosystem II subunit S (PsbS) protein. Changes in thermal energy dissipation under unfavorable soil conditions are summarized here. Very high levels of thermal energy dissipation are frequently, but not always, accompanied by decreases in leaf chlorophyll concentration, such as those found under N and Fe deficiency, excess Al, or water stress in some species. The mechanisms of photoprotection remain largely unexplored for some of the stress situations reported here. In this chapter, we review changes in thermal energy dissipation in response to water stress, salinity, macronutrient (N, P, and K) deficiencies, micronutrient (Fe, Mn, Cu, and Zn) deficiencies and toxicities, and other metal (Cd, Pb, Al, and Hg) toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A –:

Antheraxanthin;

Chl –:

Chlorophyll;

D –:

Fraction of light absorbed by PS II that is dissipated thermally in the antenna, e.g., as 1 − Φ exc. = 1 − (F v /F m );

ETR –:

Electron transport rate;

NPQ –:

Non-photochemical quenching of chlorophyll fluorescence;

P –:

Fraction of light absorbed by PS II that is used in photochemistry;

Pc –:

Fraction of P that Rubisco uses for RuBP carboxylation;

Po –:

Fraction of P that Rubisco uses for RuBP oxygenation;

PPFD –:

Photosynthetic photon flux density;

PS I –:

Photosystem I;

PS II –:

Photosystem II;

Rubisco –:

Ribulose-1,5-bisphosphate carboxylase oxygenase;

RuBP –:

Ribulose bisphosphate;

V –:

Violaxanthin;

VAZ cycle –:

The xanthophyll cycle involving the carotenoids violaxanthin, antheraxanthin, and zeaxanthin;

X –:

Fraction of light absorbed by PS II that is neither used nor dissipated;

Z –:

Zeaxanthin

References

  • Abadía J, Nishio JN, Terry N (1986) Chlorophyll-protein and polypeptide composition of Mn-deficient sugar beet thylakoids. Photosynth Res 7:237–245

    PubMed  Google Scholar 

  • Abadía J, Rao IM, Terry N (1987) Changes in leaf phosphate status have only small effects on the photochemical apparatus of sugar beet leaves. Plant Sci 50:49–55

    Google Scholar 

  • Abadía J, Rao IM, Terry N (1988) Light-scattering in vivo as a tool for mineral nutrient deficiency diagnosis in crop plants. J Plant Nutr 11:423–434

    Google Scholar 

  • Abadía A, Belkhodja R, Morales F, Abadía J (1999a) Effects of salinity on the photosynthetic pigment composition of barley (Hordeum vulgare L.) grown under a triple-line-source sprinkler system in the field. J Plant Physiol 154:392–400

    Google Scholar 

  • Abadía J, Morales F, Abadía A (1999b) Photosystem II efficiency in low chlorophyll, iron-deficient leaves. Plant Soil 215:183–192

    Google Scholar 

  • Adams WW III, Muller O, Cohu CM, Demmig-Adams B (2013) May photoinhibition be a consequence, rather than a cause, of limited productivity? Photosynth Res. 117:31–44

    Google Scholar 

  • Al-Abbas AH, Barr R, Hall JD, Crane FL, Baumgardner MF (1974) Spectra of normal and nutrient deficient maize leaves. Agron J 66:16–20

    CAS  Google Scholar 

  • Alkhatib R, Maruthavanan J, Ghoshroy S, Steiner R, Sterling T, Creamer R (2011) Physiological and ultrastructural effects of lead on tobacco. Biol Plant 56:711–716

    Google Scholar 

  • Araque O, Jaimez RE, Tezaras W, Coronel I, Urich R, Espinoza W (2012) Comparative photosynthesis, water relations, growth and survival rates in Juvenile Criollo cacao cultivars (Theobroma cacao) during dry and wet seasons. Expl Agric 48:513–522

    Google Scholar 

  • Arthur GD (2012) Vermicompost leachate alleviates deficiency of phosphorus and potassium in tomato seedlings. Hortscience 47:1304–1307

    Google Scholar 

  • Barker DH, Adams WW III, Demmig-Adams B, Logan BA, Verhoeven AS, Smith SD (2002) Nocturnally retained zeaxanthin does not remain engaged in a state primed for energy dissipation during the summer in two Yucca species growing in the Mojave Desert. Plant Cell Environ 25:95–103

    CAS  Google Scholar 

  • Beis A, Patakas A (2012) Relative contribution of photoprotection and anti-oxidative mechanisms to differential drought adaptation ability in grapevines. Environ Exp Bot 78:173–183

    CAS  Google Scholar 

  • Belkhodja R, Morales F, Abadía A, Gómez-Aparisi J, Abadía J (1994) Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiol 104:667–673

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belkhodja R, Morales F, Quílez R, López-Millán AF, Abadía A, Abadía J (1998) Iron deficiency causes changes in chlorophyll fluorescence due to the reduction in the dark of the Photosystem II acceptor side. Photosynth Res 56:265–276

    CAS  Google Scholar 

  • Belkhodja R, Morales F, Abadía A, Medrano H, Abadía J (1999) Effects of salinity on chlorophyll fluorescence and photosynthesis of barley (Hordeum vulgare L.) grown under a triple-line-source sprinkler system in the field. Photosynthetica 36:375–387

    CAS  Google Scholar 

  • Benzarti M, Ben Rejeb K, Debez A, Messedi D, Abdelly C (2012) Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity. Acta Physiol Plant 34:1679–1688

    CAS  Google Scholar 

  • Biehler K, Fock H (1996) Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol 112:265–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Björkman O, Demmig-Adams B (1994) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of Photosynthesis. Springer, Berlin, pp 17–47

    Google Scholar 

  • Boo Y, Jung J (1999) Water deficit-induced oxidative stress and antioxidative defenses in rice plants. J Plant Physiol 155:255–261

    CAS  Google Scholar 

  • Bottrill DE, Possingham JV, Kriedemann PE (1970) The effect of nutrient deficiencies on photosynthesis and respiration in spinach. Plant Soil 32:424–438

    CAS  Google Scholar 

  • Brooks A (1986) Effects of phosphorus nutrition on ribulose-1,5-bisphosphate carboxylase activation, photosynthetic quantum yield and amounts of some Calvin cycle metabolites in spinach leaves. Aust J Plant Physiol 13:221–237

    CAS  Google Scholar 

  • Brugnoli E, Björkman O (1992) Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta 187:335–347

    CAS  PubMed  Google Scholar 

  • Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt tolerant (Gossypium hirsutum L.) and salt sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol 95:628–635

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bungard RA, McNeil D, Morton JD (1997) Effects of nitrogen on the photosynthetic apparatus of Clematis vitalba grown at several irradiances. Aust J Plant Physiol 24:205–214

    CAS  Google Scholar 

  • Cambrollé J, Mancilla-Leytón JM, Muñoz-Vallés S, Figueroa-Luque E, Luque T, Figueroa ME (2013) Evaluation of zinc tolerance and accumulation potential of the coastal shrub Limoniastrum monopetalum (L.) Boiss. Environ Exp Bot 85:50–57

    Google Scholar 

  • Canaani O, Havaux M (1990) Evidence for a biological role in photosynthesis for cytochrome b-559, a component of Photosystem II reaction center. Proc Natl Acad Sci USA 87:9295–9299

    CAS  PubMed Central  PubMed  Google Scholar 

  • Centritto M, Loreto F, Chartzoulakis K (2003) The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ 26:585–594

    Google Scholar 

  • Cessna S, Demmig-Adams B, Adams WW III (2010) Exploring photosynthesis and plant stress using inexpensive chlorophyll fluorometers. J Nat Resour Life Sci Educ 39:22–30

    Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916

    CAS  PubMed  Google Scholar 

  • Chen L, Fuchigami LH, Breen PJ (2001) The relationship between Photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves. J Exp Bot 52:1865–1872

    Google Scholar 

  • Chen YZ, Murchie EH, Hubbart S, Horton P, Peng SB (2003) Effects of season-dependent irradiance levels and nitrogen-deficiency on photosynthesis and photoinhibition in field-grown rice (Oryza sativa). Physiol Plant 117:343–351

    CAS  PubMed  Google Scholar 

  • Chen LS, Qi YP, Liu XH (2005a) Effects of aluminum on light energy utilization and photoprotective systems in Citrus leaves. Ann Bot 96:35–41

    CAS  PubMed  Google Scholar 

  • Chen LS, Qi YP, Smith BR, Liu XH (2005b) Aluminum-induced decrease in CO2 assimilation in citrus seedlings is unaccompanied by decreased activities of key enzymes involved in CO2 assimilation. Tree Physiol 25:317–324

    CAS  PubMed  Google Scholar 

  • Chen WR, Yang X, He ZL, Feng Y, Hu FH (2008) Differential changes in photosynthetic capacity, 77 K chlorophyll fluorescence and chloroplast ultrastructure between Zn-efficient and Zn-inefficient rice genotypes (Oryza sativa) under low zinc stress. Physiol Plant 132:89–101

    CAS  PubMed  Google Scholar 

  • Cheng L (2003) Xanthophyll cycle pool size and composition in relation to the nitrogen content of apple leaves. J Exp Bot 54:385–393

    CAS  PubMed  Google Scholar 

  • Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9

    CAS  PubMed  Google Scholar 

  • Da Matta FM, Maestri M, Barros RS (1997) Photosynthetic performance of two coffee species under drought. Photosynthetica 34:257–264

    Google Scholar 

  • Dawood M, Cao F, Janangir MM, Zhang G, Wu F (2012) Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley. J Hazard Mater 209–210:121–128

    PubMed  Google Scholar 

  • Deeba F, Pandey AK, Ranjan S, Mishra A, Singh R, Sharma YK, Shirke PA, Panday V (2012) Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Biochem 53:6–18

    CAS  PubMed  Google Scholar 

  • Delfine S, Alvino A, Villani MC, Loreto F (1999) Restrictions to CO2 conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiol 119:1101–1106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demmig B, Winter K, Krüger A, Czygan F-C (1988) Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a combination of high light and water stress. Plant Physiol 87:17–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW III (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153

    CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW III (2003) Photoinhibition. In: Thomas B, Murphy D, Murray B (eds) Encyclopedia of Applied Plant Science. Academic, New York, pp 707–714

    Google Scholar 

  • Demmig-Adams B, Adams WW III, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264

    CAS  Google Scholar 

  • Demmig-Adams B, Cohu CM, Amiard V, Zadelhoff G, Veldink GA, Muller O, Adams WW III (2013) Emerging trade-offs – impacts of photoprotectants (PsbS, xanthophylls, and vitamin E) on oxylipins as regulators of development and defense. New Phytol 197:720–729

    CAS  PubMed  Google Scholar 

  • Di Cagno R, Guidi L, De Gara L, Soldatini GF (2001) Combined cadmium and ozone treatments affect photosynthesis and ascorbate-dependent defences in sunflower. New Phytol 151:627–636

    Google Scholar 

  • Dunagan SC, Gilmore MS, Varekamp JC (2007) Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapa P.). Environ Pollut 148:301–311

    CAS  PubMed  Google Scholar 

  • Epron D, Dreyer E (1993) Photosynthesis of oak leaves under water stress: maintenance of high photochemical efficiency of photosystem II and occurrence of non-uniform CO2 assimilation. Tree Physiol 13:107–117

    CAS  PubMed  Google Scholar 

  • Faria T, Silvério D, Breia E, Cabral R, Abadía A, Abadía J, Pereira JS, Chaves MM (1998) Differences in the response of carbon assimilation to summer stress (water deficits, high light and temperature) in four Mediterranean tree species. Physiol Plant 102:419–428

    CAS  Google Scholar 

  • Feng Y-L, Lei Y-B, Li Z (2012) Micronutrient deficiencies accelerate leaf senescence in Amomum villosum. Bot Stud 53:345–352

    CAS  Google Scholar 

  • Fini A, Guidi L, Ferrini F, Brunetti C, Di Ferdinando M, Biricolti S, Pollastri S, Calamai L, Tattini M (2012) Drought stress has contrasting effects on antioxidant enzymes activity and phenylpropanoid biosynthesis in Fraxinus ornus leaves: An excess light stress affair? J Plant Physiol 169:929–939

    CAS  PubMed  Google Scholar 

  • Flexas J, Medrano H (2002) Energy dissipation in C3 plants under drought. Funct Plant Biol 29:1209–1215

    CAS  Google Scholar 

  • Flexas J, Escalona JM, Medrano H (1998) Down-regulation of photosynthesis by drought under field conditions in grapevine leaves. Aust J Plant Physiol 25:893–900

    Google Scholar 

  • Flexas J, Escalona JM, Medrano H (1999) Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant Cell Environ 22:39–48

    Google Scholar 

  • Flexas J, Bota J, Escalona JM, Sampól B, Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol 29:461–471

    Google Scholar 

  • Fork DC, Herbert SK (1993) Electron transport and photophosphorylation by Photosystem I in vivo in plants and cyanobacteria. Photosynth Res 36:149–168

    CAS  PubMed  Google Scholar 

  • Fozouni M, Abbaspour N, Baneh HD (2012) Leaf water potential, photosynthetic pigments and compatible solutes alterations in four grape cultivars under salinity. Vitis 51:147–152

    CAS  Google Scholar 

  • Fredeen AL, Rao IM, Terry N (1989) Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol 89:225–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol 116:571–580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geiken B, Masojídek J, Rizzuto M, Pompili ML, Giardi MT (1998) Incorporation of [35S]methionine in higher plants reveals that stimulation of the D1 reaction centre II protein turnover accompanies tolerance to heavy metal stress. Plant Cell Environ 21:1265–1273

    CAS  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Godbold DL, Hüttermann A (1988) Inhibition of photosynthesis and transpiration in relation to mercury-induced root damage in spruce seedlings. Physiol Plant 74:270–275

    CAS  Google Scholar 

  • González A, Steffen KL, Lynch JP (1998) Light and excess manganese. Implications for oxidative stress in common bean. Plant Physiol 118:493–504

    PubMed Central  PubMed  Google Scholar 

  • Gratani L, Ghia E (2002) Adaptive strategy at the leaf level of Arbutus unedo L. to cope with Mediterranean climate. Flora 197:275–284

    Google Scholar 

  • Greger M, Ögren E (1991) Direct and indirect effects of Cd2+ on photosynthesis in sugar beet (Beta vulgaris). Physiol Plant 83:129–135

    CAS  Google Scholar 

  • Haupt-Herting S, Klug K, Fock H (2001) A new approach to measure gross CO2 fluxes in leaves. Gross CO2 assimilation, photorespiration, and mitochondrial respiration in the light in tomato under drought stress. Plant Physiol 126:388–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96:8762–8767

    CAS  PubMed Central  PubMed  Google Scholar 

  • He J, Chee CW, Goh CJ (1996) “Photoinhibition” of Heliconia under natural tropical conditions: the importance of leaf orientation for light interception and leaf temperature. Plant Cell Environ 19:1238–1248

    Google Scholar 

  • He J-Y, Ren Y-F, Zhu C, Yan Y-P, Jiang D-A (2008) Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice. Photosynthetica 46:466–470

    CAS  Google Scholar 

  • He G, Zhang J, Hu X, Wu J (2011) Effect of aluminum toxicity and phosphorus deficiency on the growth and photosynthesis of oil tea (Camellia oleifera Abel.) seedlings in acidic red soils. Acta Physiol Plant 33:1285–1292

    CAS  Google Scholar 

  • Henriques FS (1989) Effects of copper deficiency on the photosynthetic apparatus of sugar beet (Beta vulgaris L.). J Plant Physiol 135:453–458

    CAS  Google Scholar 

  • Henriques FS (2003) Gas exchange, chlorophyll a fluorescence kinetics and lipid peroxidation of pecan leaves with varying manganese concentrations. Plant Sci 165:239–244

    CAS  Google Scholar 

  • Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P (2009) Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 483:262–267

    CAS  Google Scholar 

  • Horler DNH, Barber J, Barringer AR (1980) Effects of heavy metals on the absorbance and reflectance spectra of plants. Int J Remote Sens 1:121–136

    Google Scholar 

  • Huang W, Zhang S-B, Cao K-F (2012) Evidence for leaf fold to remedy the deficiency of physiological photoprotection for photosystem II. Photosynth Res 110:185–191

    CAS  PubMed  Google Scholar 

  • Huseynova IM (2012) Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought. Biochim Biophys Acta 1817:1516–1523

    CAS  PubMed  Google Scholar 

  • Husted S, Laursen KH, Hebbern CA, Schmidt SB, Pedas P, Haldrup A, Jensen PE (2009) Manganese deficiency leads to genotype-specific changes in fluorescence induction kinetics and state transitions. Plant Physiol 150:825–833

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inostroza-Blancheteau C, Reyes-Díaz M, Aquea F, Nunes-Nesi A, Alberdi M, Arce-Johnson P (2011) Biochemical and molecular changes in response to aluminium-stress in highbush blueberry (Vaccinium corymbosum L.). Plant Physiol Biochem 49:1005–1012

    CAS  PubMed  Google Scholar 

  • Janik E, Maksymiec W, Gruszecki WI (2010) The photoprotective mechanisms in Secale cereale leaves under Cu and high light stress condition. J Photochem Photobiol B Biol 101:47–52

    CAS  Google Scholar 

  • Jiang CD, Gao HY, Zou Q (2002) Characteristics of photosynthetic apparatus in Mn-starved maize leaves. Photosynthetica 40:209–213

    CAS  Google Scholar 

  • Jiang HX, Chen LS, Zheng JG, Han S, Tang N, Smith BR (2008) Aluminum-induced effects on Photosystem II photochemistry in Citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol 28:1863–1871

    CAS  PubMed  Google Scholar 

  • Jin SH, Li XQ, Jia XL (2011) Genotypic differences in the responses of gas exchange, chlorophyll fluorescence, and antioxidant enzymes to aluminum stress in Festuca arundinacea. Russ J Plant Physiol 58:560–566

    CAS  Google Scholar 

  • Juvany M, Müller M, Munné-Bosch S (2012) Leaves of field-grown mastic trees suffer oxidative stress at two extremes of their lifespan. J Integr Plant Biol 54:584–594

    CAS  PubMed  Google Scholar 

  • Kampfenkel K, Van Montagu M, Inzé D (1995) Effect of iron excess on Nicotiana plumbaginifolia plants. Implications to oxidative stress. Plant Physiol 107:725–735

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kao W-Y, Forseth IN (1991) The effects of nitrogen, light and water availability on tropic leaf movements in soybean (Glycine max). Plant Cell Environ 14:287–293

    Google Scholar 

  • Kao W-Y, Forseth IN (1992) Diurnal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availability. Plant Cell Environ 15:703–710

    CAS  Google Scholar 

  • Kao W-Y, Tsai T-T (1998) Tropic leaf movements, photosynthetic gas exchange, leaf δ13C and chlorophyll a fluorescence of three soybean species in response to water availability. Plant Cell Environ 21:1055–1062

    CAS  Google Scholar 

  • Katona E, Neimais S, Schönknechst G, Heber U (1992) Photosystem I-dependent cyclic electron transport is important in controlling Photosystem II activity in leaves under water stress. Photosynth Res 34:449–469

    CAS  PubMed  Google Scholar 

  • Kchaou H, Larbi A, Chaieb M, Sagardoy R, Msallem M, Morales F (2013) Genotypic differentiation in the stomatal response to salinity and contrasting photosynthetic and photoprotection responses in five olive (Olea europaea L.) cultivars. Sci Hortic 160:129–138

    CAS  Google Scholar 

  • Kim CS, Jung J (1993) The susceptibility of mung bean chloroplasts to photoinhibition is increased by an excess supply of iron to plants: a photobiological aspect of iron toxicity in plant leaves. Photochem Photobiol 58:120–126

    CAS  Google Scholar 

  • Kitao M, Lei TT, Koike T (1997) Effects of manganese toxicity on photosynthesis of white birch (Betula platyphylla var. japonica) seedlings. Physiol Plant 101:249–256

    CAS  Google Scholar 

  • Kriedemann PE, Anderson JE (1988) Growth and photosynthetic responses to manganese and copper deficiencies in wheat (Triticum aestivum) and barley grass (Hordeum glaucum and H. leporinum). Aust J Plant Physiol 15:429–446

    CAS  Google Scholar 

  • Krupa Z, Öquist G, Huner NPA (1993) The effect of cadmium on photosynthesis of Phaseolus vulgaris – a fluorescence analysis. Physiol Plant 88:626–630

    CAS  Google Scholar 

  • Kumar P, Kumar TR, Sharma PN (2008) Modulation of copper toxicity-induced oxidative damage by excess supply of iron in maize plants. Plant Cell Rep 27:399–409

    CAS  PubMed  Google Scholar 

  • Kumar A, Prasad MNV, Sytar O (2012) Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere 89:1056–1065

    CAS  PubMed  Google Scholar 

  • Kyparissis A, Drilias P, Manetas Y (2000) Seasonal fluctuations in photoprotective (xanthophyll cycle) and photoselective (chlorophylls) capacity in eight Mediterranean plant species belonging to two different growth forms. Aust J Plant Physiol 27:265–272

    CAS  Google Scholar 

  • Larbi A, Morales F, Abadía A, Gogorcena Y, Lucena JJ, Abadía J (2002) Effects of Cd and Pb in sugar beet plants grown in nutrient solution: induced Fe deficiency and growth inhibition. Funct Plant Biol 29:1453–1464

    CAS  Google Scholar 

  • Larbi A, Abadía A, Abadía J, Morales F (2006) Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynth Res 89:113–126

    CAS  PubMed  Google Scholar 

  • Larcher W, Wagner J, Thammathaworn A (1990) Effects of superimposed temperature stress on in vivo chlorophyll fluorescence of Vigna unguiculata under saline stress. J Plant Physiol 136:92–102

    CAS  Google Scholar 

  • Larsson EH, Bornman JF, Asp H (1998) Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp Bot 49:1031–1039

    CAS  Google Scholar 

  • Larsson EH, Bornman JF, Asp H (2001) Physiological effects of cadmium and UV-B radiation in phytochelatin-deficient Arabidopsis thaliana, cad1-3. Aust J Plant Physiol 28:505–512

    CAS  Google Scholar 

  • Latowski D, Kruk J, Strzalka K (2005) Inhibition of zeaxanthin epoxidase activity by cadmium ions in higher plants. J Inorg Biochem 99:2081–2087

    CAS  PubMed  Google Scholar 

  • Lauer MJ, Pallardy SG, Blevins DG, Randall DD (1989) Whole leaf carbon exchange characteristics of phosphate deficient soybeans (Glycine max L.). Plant Physiol 91:848–854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Q, Chen LS, Jiang HX, Tang N, Yang LT, Lin ZH, Li Y, Yang GH (2010) Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grandis seedlings. BMC Plant Biol 10:42

    PubMed Central  PubMed  Google Scholar 

  • Li F, Wu QY, Duan M, Dong XC, Li B, Meng QW (2012a) Transgenic tomato plants overexpressing chloroplastic monodehydroascorbate reductase are resistant to salt- and PEG-induced osmotic stress. Photosynthetica 50:120–128

    CAS  Google Scholar 

  • Li J, Liao J, Guan M, Wang E, Zhang J (2012b) Salt tolerance of Hibiscus hamabo seedlings: a candidate halophyte for reclamation areas. Acta Physiol Plant 34:1747–1755

    CAS  Google Scholar 

  • Li X, Zhang L, Li Y, Ma L, Bu N, Ma C (2012c) Changes in photosynthesis, antioxidant enzymes and lipid peroxidation in soybean seedlings exposed to UV-B radiation and/or Cd. Plant Soil 352:377–387

    CAS  Google Scholar 

  • Li X, Zhao M, Guo L, Huang L (2012d) Effect of cadmium on photosynthetic pigments, lipid peroxidation, antioxidants, and artemisinin in hydroponically grown Artemisia annua. J Environ Sci 24:1511–1518

    CAS  Google Scholar 

  • Li Z, Xing F, Xing D (2012e) Characterization of target site of aluminum phytotoxicity in photosynthetic electron transport by fluorescence techniques in tobacco leaves. Plant Cell Physiol 53:1295–1309

    CAS  PubMed  Google Scholar 

  • Lidon FC, Ramalho JC, Barreiro MG, Lauriano JA (1997) Modulation of photosystem 2 reactions mediated by aluminium toxicity in Zea mays. Photosynthetica 34:151–156

    CAS  Google Scholar 

  • Lidon FC, Barreiro MG, Ramalho JC, Lauriano JA (1999) Effects of aluminum toxicity on nutrient accumulation in maize shoots: implications on photosynthesis. J Plant Nutr 22:397–416

    CAS  Google Scholar 

  • Linger P, Ostwald A, Haensler J (2005) Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. Biol Plant 49:567–576

    CAS  Google Scholar 

  • Liu D, Li Li TQ, Yang XE, Islam E, Jin XF, Mahmood Q (2008) Effect of Pb on leaf antioxidant enzyme activities and ultrastructure of the two ecotypes of Sedum alfredii Hance. Russ J Plant Physiol 55:68–76

    CAS  Google Scholar 

  • Liu N, Lin ZF, Lin GZ, Song LY, Chen SW, Mo H, Peng CL (2010) Lead and cadmium induced alterations of cellular functions in leaves of Alocasia macrorrhiza L. Schott. Ecotoxicol Environ Saf 73:1238–1245

    CAS  PubMed  Google Scholar 

  • Liu ZX, Bie ZL, Huang Y, Zhen A, Lei B, Zhang HY (2012) Grafting onto Cucurbita moschata rootstock alleviates salt stress in cucumber plants by delaying photoinhibition. Photosynthetica 50:152–160

    CAS  Google Scholar 

  • Loreto F, Centritto M, Chartzoulakis K (2003) Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant Cell Environ 26:595–601

    CAS  Google Scholar 

  • Lu CM, Zhang JH (2000) Photosystem II photochemistry and its sensitivity to heat stress in maize plants as affected by nitrogen deficiency. J Plant Physiol 157:124–130

    CAS  Google Scholar 

  • Lu CM, Jiang G, Wang B, Kuang T (2003) Photosystem II photochemistry and photosynthetic pigment composition in salt-adapted halophyte Artimisia anethifolia grown under outdoor conditions. J Plant Physiol 160:403–408

    CAS  PubMed  Google Scholar 

  • Mahmoudi H, Ben Massoud R, Baatour O, Tarchoune I, Ben Salah I, Nasri N, Abidi W, Kaddour R, Hannoufa AA, Lachaâl M, Ouerghi Z (2012) Influence of different seed priming methods for improving salt stress tolerance in lettuce plants. J Plant Nutr 35:1910–1922

    CAS  Google Scholar 

  • Maksymiec W, Baszynski T (1999) The role of Ca2+ ions in modulating changes induced in bean plants by an excess of Cu2+ ions. Chlorophyll fluorescence measurements. Physiol Plant 105:562–568

    CAS  Google Scholar 

  • Marschner H (1995) Mineral Nutrition of Higher Plants. Academic, London

    Google Scholar 

  • Marschner H, Cakmak I (1989) High light intensity enhances chlorosis and necrosis in leaves of zinc-, potassium- and magnesium-deficient bean (Phaseolus vulgaris) plants. J Plant Physiol 134:308–315

    CAS  Google Scholar 

  • Martínez-Peñalver A, Graña E, Reigosa MJ, Sánchez-Moreiras AM (2012) Early photosynthetic response of Arabidopsis thaliana to temperature and salt stress conditions. Russ J Plant Physiol 59:640–647

    Google Scholar 

  • Masoni A, Ercoli L, Mariotti M (1996) Spectral properties of leaves deficient in iron, sulfur, magnesium and manganese. Agron J 88:937–943

    CAS  Google Scholar 

  • McCarthy I, Romero-Puertas MC, Palma JM, Sandalio LM, Corpas FJ, Gómez M, del Río LA (2001) Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant Cell Environ 24:1065–1073

    CAS  Google Scholar 

  • McCool MM (1935) Effect of light intensity on the manganese content of plants. Contrib Boyce Thompson Inst 7:427–437

    CAS  Google Scholar 

  • Medrano H, Bota J, Abadía A, Sampól B, Escalona JM, Flexas J (2002) Effects of drought on light-energy dissipation mechanisms in high-light-acclimated, field-grown grapevines. Funct Plant Biol 29:1197–1207

    CAS  Google Scholar 

  • Melgar JC, Syvertsen JP, Martínez V, García-Sánchez F (2008) Leaf gas exchange, water relations, nutrient content and growth in citrus and olive seedlings under salinity. Biol Plant 52:385–390

    CAS  Google Scholar 

  • Mishra SK, Subrahmanyam D, Singhal S (1991) Interrelationship between salt and light stress on primary processes of photosynthesis. J Plant Physiol 138:92–96

    CAS  Google Scholar 

  • Mishra Y, Jänkänpää HJ, Kiss AZ, Funk C, Schröder WP, Jansson (2012) Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components. BMC Plant Biol 12:6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mohamed AA, Castagna A, Ranieri A, Sanità di Toppi L (2012) Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol Biochem 57:15–22

    CAS  PubMed  Google Scholar 

  • Monnet F, Vaillant N, Vernay P, Coudret A, Sallanon H, Hitmi A (2001) Relationship between PSII activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress. J Plant Physiol 158:1137–1144

    CAS  Google Scholar 

  • Morales F, Abadía A, Abadía J (1990) Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.). Plant Physiol 94:607–613

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morales F, Abadía A, Abadía J (1991) Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves. Plant Physiol 97:886–893

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morales F, Abadía A, Gómez-Aparisi J, Abadía J (1992) Effects of combined NaCl and CaCl2 salinity on photosynthetic parameters of barley grown in nutrient solution. Physiol Plant 86:419–426

    CAS  Google Scholar 

  • Morales F, Belkhodja R, Abadía A, Abadía J (1994) Iron deficiency-induced changes in the photosynthetic pigment composition of field-grown pear (Pyrus communis L.) leaves. Plant Cell Environ 17:1153–1160

    CAS  Google Scholar 

  • Morales F, Abadía A, Abadía J (1998) Photosynthesis, quenching of chlorophyll fluorescence and thermal energy dissipation in iron-deficient sugar beet leaves. Aust J Plant Physiol 25:403–412

    CAS  Google Scholar 

  • Morales F, Belkhodja R, Abadía A, Abadía J (2000a) Photosystem II efficiency and mechanisms of energy dissipation in iron-deficient, field-grown pear trees (Pyrus communis L.). Photosynth Res 63:9–21

    CAS  PubMed  Google Scholar 

  • Morales F, Belkhodja R, Abadía A, Abadía J (2000b) Energy dissipation in the leaves of Fe-deficient pear trees grown in the field. J Plant Nutr 23:1709–1716

    CAS  Google Scholar 

  • Morales F, Moise N, Quílez R, Abadía A, Abadía J, Moya I (2001) Iron deficiency interrupts energy transfer from a disconnected part of the antenna to the rest of Photosystem II. Photosynth Res 70:207–220

    CAS  PubMed  Google Scholar 

  • Morales F, Abadía A, Abadía J, Montserrat G, Gil-Pelegrín E (2002) Trichomes and photosynthetic pigment composition changes: responses of Quercus ilex subsp. ballota (Desf.) Samp. and Quercus coccifera L. to Mediterranean stress conditions. Trees 16:504–510

    CAS  Google Scholar 

  • Mousavi A, Lessani H, Babalar M, Talaei AR, Fallahi E (2008) Influence of salinity on chlorophyll, leaf water potential, total soluble sugars, and mineral nutrients in two young olive cultivars. J Plant Nutr 31:1906–1916

    CAS  Google Scholar 

  • Moustakas M, Ouzounidou G (1994) Increased non-photochemical quenching in leaves of aluminum-stressed wheat plants is due to Al3+-induced elemental loss. Plant Physiol Biochem 32:527–532

    CAS  Google Scholar 

  • Moustakas M, Ouzounidou G, Lannoye R (1995) Aluminum effects on photosynthesis and elemental uptake in an aluminum-tolerant and non-tolerant wheat cultivar. J Plant Nutr 18:669–683

    CAS  Google Scholar 

  • Moustakas M, Ouzounidou G, Eleftheriou EP, Lannoye R (1996) Indirect effects of aluminium stress on the function of the photosynthetic apparatus. Plant Physiol Biochem 34:553–560

    CAS  Google Scholar 

  • Moustakas M, Ouzounidou G, Symeonidis L, Karataglis S (1997) Field study of the effects of excess copper on wheat photosynthesis and productivity. Soil Sci Plant Nutr 43:531–539

    CAS  Google Scholar 

  • Müller-Moule P, Havaux M, Niyogi KK (2003) Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. Plant Physiol 133:748–760

    PubMed Central  PubMed  Google Scholar 

  • Nishio JN (2000) Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant Cell Environ 23:539–448

    CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    CAS  PubMed  Google Scholar 

  • Ogren WL, Bowes G (1971) Ribulose diphosphate carboxylase regulates soybean photorespiration. Nature 230:159–160

    CAS  Google Scholar 

  • Ohki K (1986) Photosynthesis, chlorophyll, and transpiration responses in aluminum stressed wheat and sorghum. Crop Sci 26:572–575

    CAS  Google Scholar 

  • Ohki K, Wilson DO, Anderson OE (1981) Manganese deficiency and toxicity sensitivities of soybean cultivar. Agron J 72:713–716

    Google Scholar 

  • Ouzounidou G (1996) The use of photoacoustic spectroscopy in assessing leaf photosynthesis under copper stress: correlation of energy storage to photosystem II fluorescence parameters and redox change of P700. Plant Sci 113:229–237

    CAS  Google Scholar 

  • Ouzounidou G, Symeonidis L, Babalonas D, Karataglis S (1994) Comparative responses of a copper-tolerant and a copper-sensitive population of Minuartia hirsuta to copper toxicity. J Plant Physiol 144:109–115

    CAS  Google Scholar 

  • Ouzounidou G, Moustakas M, Strasser RJ (1997) Sites of action of copper in the photosynthetic apparatus of maize leaves: kinetic analysis of chlorophyll fluorescence, oxygen evolution, absorption changes and thermal dissipation as monitored by photoacoustic signals. Aust J Plant Physiol 24:81–90

    CAS  Google Scholar 

  • Peguero-Pina JJ, Gil-Pelegrín E, Morales F (2009) Photosystem II efficiency of the palisade and spongy mesophyll in Quercus coccifera using adaxial/abaxial illumination and excitation light sources with wavelengths varying in penetration into the leaf tissue. Photosynth Res 99:49–61

    CAS  PubMed  Google Scholar 

  • Peguero-Pina JJ, Gil-Pelegrín E, Morales F (2013) Three pools of zeaxanthin in Quercus coccifera leaves during light transitions with different roles in rapidly reversible photoprotective energy dissipation and photoprotection. J Exp Bot 64:1649–1661

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pérez C, Madero P, Pequerul A, Val J, Monge E (1993) Specificity of manganese in some aspects of soybean (Glycine max L.) physiology. In: Fragoso MAC, van Beusichem ML (eds) Optimization of Plant Nutrition. Kluwer Academic Publishers, Dordrecht, pp 503–507

    Google Scholar 

  • Petridis A, Therios I, Samouris G, Koundouras S, Giannakoula A (2012) Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiol Biochem 60:1–11

    CAS  PubMed  Google Scholar 

  • Prasad DDK, Prasad ARK (1987) Altered δ-aminolevulinic acid metabolism by lead and mercury in germinating seedlings of bajra (Pennisetum typhoideum). J Plant Physiol 127:241–249

    CAS  Google Scholar 

  • Quílez R, Abadía A, Abadía J (1992) Characteristics of thylakoids and photosystem II membrane preparations from iron deficient and iron sufficient sugar beet (Beta vulgaris L.). J Plant Nutr 15:1809–1819

    Google Scholar 

  • Rao IM, Terry N (1989) Leaf phosphate status, photosynthesis and carbon partitioning in sugar beet. I. Changes in growth, gas exchange and Calvin cycle enzymes. Plant Physiol 90:814–819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rao IM, Abadía J, Terry N (1986) Leaf phosphate status and photosynthesis in vivo: changes in light scattering and chlorophyll fluorescence during photosynthetic induction in sugar beet leaves. Plant Sci 44:133–137

    CAS  Google Scholar 

  • Rengifo E, Tezara W, Herrera A (2005) Water relations, chlorophyll a fluorescence, and contents of saccharides in tree species of a tropical forest in response to flood. Photosynthetica 43:203–210

    CAS  Google Scholar 

  • Ribeiro de Souza SC, López de Andrade SA, Anjos de Souza L, Schiavinato MA (2012) Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling state. J Environ Manage 110:299–307

    CAS  PubMed  Google Scholar 

  • Roy Chowdhury S, Kumar A, Sahoo N (2009) Diurnal changes in chlorophyll fluorescence and light utilization in Colocasia esculenta leaves grown in marshy waterlogged area. Biol Plant 53:167–170

    Google Scholar 

  • Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181

    CAS  PubMed  Google Scholar 

  • Sagardoy R, Morales F, López-Millán AF, Abadía A, Abadía J (2009) Effects of zinc toxicity in sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biol 11:339–350

    CAS  PubMed  Google Scholar 

  • Sagardoy R, Vázquez S, Florez-Sarasa ID, Albacete A, Ribas-Carbó M, Flexas J, Abadía J, Morales F (2010) Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. New Phytol 187:145–158

    CAS  PubMed  Google Scholar 

  • Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F (2012a) Climate change (elevated CO2, elevated temperature and moderate drought) triggers the antioxidant enzymes’ response of grapevine cv. Tempranillo, avoiding oxidative damage. Physiol Plant 144:99–110

    CAS  PubMed  Google Scholar 

  • Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F (2012b) Photosynthetic response of Tempranillo grapevine to climate change scenarios. Ann Appl Biol 161:277–292

    CAS  Google Scholar 

  • Schuerger AC, Capelle GA, Di Benedetto JA, Mao C, Thai CN, Evans MD, Richards JT, Blank TA, Stryjewski EC (2003) Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in Bahia grass (Paspalum notatum Flugge.). Remote Sens Environ 84:572–588

    Google Scholar 

  • Schwaller MR, Schnetzler CC, Marshall PE (1983) The changes in leaf reflectance of sugar maple (Acer saccharum Marsh) seedlings in response to heavy metal stress. Int J Remote Sens 4:93–100

    Google Scholar 

  • Shi G, Liu C, Cui M, Ma Y, Cai Q (2012) Cadmium tolerance and bioaccumulation of 18 hemp accessions. Appl Biochem Biotechnol 168:163–173

    CAS  PubMed  Google Scholar 

  • Shu S, Guo SR, Sun J, Yuan LY (2012) Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiol Plant 146:285–296

    CAS  PubMed  Google Scholar 

  • Silva EN, Ribeiro RV, Ferreira-Silva SL, Vieira SA, Ponte LFA, Silveira JAG (2012) Coordinate changes in photosynthesis, sugar accumulation and antioxidative enzymes improve the performance of Jatropha curcas plants under drought stress. Biomass Bioenerg 45:270–279

    CAS  Google Scholar 

  • Smith BR, Cheng L (2005) Photoprotective mechanisms of ‘Concord’ grape leaves in relation to iron supply. J Am Soc Hort Sci 130:331–340

    CAS  Google Scholar 

  • Sperdouli I, Moustakas M (2012) Differential response of photosystem II photochemistry in young and mature leaves of Arabidopsis thaliana to the onset of drought stress. Acta Physiol Plant 34:1267–1276

    CAS  Google Scholar 

  • Stobart AK, Griffiths WT, Ameen-Bukhari, Sherwood RP (1985) The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63:293–298

    CAS  Google Scholar 

  • Suh H-J, Kim CS, Lee J-Y, Jung J (2002) Photodynamic effect of iron excess on photosystem II function in pea plants. Photochem Photobiol 75:513–518

    CAS  PubMed  Google Scholar 

  • Sun J, Nishio JN, Vogelmann TC (1996) High-light effects on CO2 fixation gradients across leaves. Plant Cell Environ 19:1261–1271

    Google Scholar 

  • Takizawa K, Kanazawa A, Kramer DM (2008) Depletion of stromal Pi induces high ‘energy-dependent’ antenna exciton quenching (qE) by decreasing proton conductivity at CFO-CF1 ATP synthase. Plant Cell Environ 31:235–243

    CAS  PubMed  Google Scholar 

  • Terry N (1980) Limiting factors in photosynthesis. I. Use of iron stress to control photochemical capacity in vivo. Plant Physiol 65:114–120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terry N, Ulrich A (1973a) Effects of potassium deficiency on the photosynthesis and respiration of leaves of sugar beet. Plant Physiol 51:783–786

    CAS  Google Scholar 

  • Terry N, Ulrich A (1973b) Effects of phosphorus deficiency on the photosynthesis and respiration of leaves of sugar beet. Plant Physiol 51:43–47

    Google Scholar 

  • Terry N, Ulrich A (1974) Photosynthetic and respiratory CO2 exchange of sugar beet as influenced by manganese deficiency. Crop Sci 14:502–504

    CAS  Google Scholar 

  • Touchette BW, Adams EC, Laimbeer P (2012) Age-specific responses to elevated salinity in the coastal marsh plant black needlerush (Juncus roemerianus Scheele) as determined through polyphasic chlorophyll a fluorescence transients (OJIP). Mar Biol 159:2137–2147

    CAS  Google Scholar 

  • Tounekti T, Abreu ME, Khemira H, Munné-Bosch S (2012) Canopy position determines the photoprotective demand and antioxidant protection of leaves in salt-stressed Salvia officinalis L. plants. Environ Exp Bot 78:146–156

    CAS  Google Scholar 

  • Vaillant N, Monnet F, Hitmi A, Sallanon H, Coudret A (2005) Comparative study of responses in four Datura species to a zinc stress. Chemosphere 59:1005–1013

    CAS  PubMed  Google Scholar 

  • Valentini R, Epron D, De Angelis P, Matteucci G, Dreyer E (1995) In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Quercus cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ 18:631–640

    CAS  Google Scholar 

  • Valladares F, Pugnaire FI (1999) Tradeoffs between irradiance capture and avoidance in semi-arid environments assessed with a crown architecture model. Ann Bot 83:459–469

    Google Scholar 

  • van Assche FV, Clijsters H (1986) Inhibition of photosynthesis by treatment of Phaseolus vulgaris with toxic concentration of zinc: effects on electron transport and photophosphorylation. Physiol Plant 66:717–721

    Google Scholar 

  • Verhoeven AS, Demmig-Adams B, Adams WW III (1997) Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiol 113:817–824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vieira FCB, He ZL, Wilson PC, Bayer C, Stoffella PJ, Baligar VC (2008) Response of representative cover crops to aluminum toxicity, phosphorus deprivation, and organic amendment. Aust J Agr Res 59:52–61

    CAS  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Google Scholar 

  • Walker DA, Sivak MN (1985) Can phosphate limit photosynthetic carbon assimilation in vivo? Physiol Veg 23:829–841

    CAS  Google Scholar 

  • Wang H, Jin JY (2005) Photosynthetic rate, chlorophyll fluorescence parameters, and lipid peroxidation of maize leaves as affected by zinc deficiency. Photosynthetica 43:591–596

    CAS  Google Scholar 

  • Weigel HJ (1985) Inhibition of photosynthetic reactions of isolated chloroplasts by cadmium. J Plant Physiol 119:179–189

    CAS  Google Scholar 

  • Weng XY, Zheng CJ, Xu HX, Sun JY (2007) Characteristics of photosynthesis and functions of the water-water cycle in rice (Oryza sativa) leaves in response to potassium deficiency. Physiol Plant 131:614–621

    CAS  PubMed  Google Scholar 

  • Wodala B, Eitel G, Gyula TN, Ördög A, Horváth F (2012) Monitoring moderate Cu and Cd toxicity by chlorophyll fluorescence and P700 absorbance in leaves. Photosynthetica 50:380–386

    CAS  Google Scholar 

  • Wu W-M, Li J-C, Chen H-J, Wang S-J, Wei F-Z, Wang C-Y, Wang Y-H, Wu J-D, Zhang Y (2013) Effects of nitrogen fertilization on chlorophyll fluorescence change in maize (Zea mays L.) under waterlogging at seedling stage. J Food Agric Environ 11:545–552

    CAS  Google Scholar 

  • Xu HX, Weng XY, Yang Y (2007) Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants. Russ J Plant Physiol 54:741–748

    CAS  Google Scholar 

  • Yan H, Hu X, Li F (2012) Leaf photosynthesis, chlorophyll fluorescence, ion content and free amino acids in Caragana korshinskii Kom exposed to NaCl stress. Acta Physiol Plant 34:2285–2295

    CAS  Google Scholar 

  • Yang L-T, Qi Y-P, Chen L-S, Sang W, Lin X-J, Wu Y-L, Yang C-J (2012) Nitric oxide protects sour pummelo (Citrus grandis) seedlings against aluminum-induced inhibition of growth and photosynthesis. Environ Exp Bot 82:1–13

    CAS  Google Scholar 

  • Yao YA, Mou D, Xu G, Lutts S, Achal V, Ma J (2012) Contrasting performance and different tolerance of chestnut rose and grape to excess manganese. J Plant Growth Regul 31:416–426

    CAS  Google Scholar 

  • Zhang C, Li Y, Yuan F, Hu S, He P (2012a) Effects of hematin and carbon monoxide on the salinity stress responses of Cassia obtusifolia L. seeds and seedlings. Plant Soil 359:85–105

    CAS  Google Scholar 

  • Zhang Q-Y, Wang L-Y, Kong F-Y, Deng Y-S, Li B, Meng Q-W (2012b) Constitutive accumulation of zeaxanthin in tomato alleviates salt stress-induced photoinhibition and photooxidation. Physiol Plant 146:363–373

    CAS  PubMed  Google Scholar 

  • Zhao H, Wu L, Chai T, Zhang Y, Tan J, Ma S (2012) The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana. J Plant Physiol 169:1243–1252

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Spanish grants AGL2009-09018 to AA and AGL2010-16515 to JA, and Aragón Government (A03 research group).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fermín Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Morales, F., Abadía, J., Abadía, A. (2014). Thermal Energy Dissipation in Plants Under Unfavorable Soil Conditions. In: Demmig-Adams, B., Garab, G., Adams III, W., Govindjee, . (eds) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9032-1_27

Download citation

Publish with us

Policies and ethics