Skip to main content

Microbial Food Webs in Aquatic and Terrestrial Ecosystems

  • Chapter
  • First Online:
Environmental Microbiology: Fundamentals and Applications

Abstract

In microbial food webs, different types of interactions occur between microorganisms themselves and with meio- and macroorganisms. After an historical and general introduction, the biological components of the microbial food webs in the pelagic and benthic marine and lake ecosystems, as well as in the terrestrial ecosystems, are presented. The functioning of the microbial food webs in different ecosystems is illustrated and explained, including the trophic pathways and transfer of matter from microbial food webs toward meio- and macroorganisms of the superior trophic levels, the nutrient recycling in the aquatic environments, and the decomposition of organic matter in soils. Finally, the factors regulating microbial food webs, primarily “top-down” and “bottom-up” controls, are described with a special focus on the role of viruses in the aquatic microbial food webs.

Chapter Coordinators

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann H-W (2003) Bacteriophage observations and evolution. Res Microbiol 154:245–251

    Article  CAS  PubMed  Google Scholar 

  • Aller RC, Aller JY (1992) Meiofauna and solute transport in marine muds. Limnol Oceanogr 37:1018–1033

    Article  CAS  Google Scholar 

  • Amblard C, Carrias JF, Bourdier G, Maurin N (1995) The microbial loop in a humic lake: seasonal and vertical variations in the structure of the different communities. Hydrobiologia 300(301):71–84

    Article  Google Scholar 

  • Amblard C, Boisson JC, Bourdier G, Fontvieille D, Gayte X, Sime-Ngando T (1998) Ecologie microbienne en milieu aquatique: des virus aux protozoaires. Rev Sc. Eau, N° Spécial: Les Sciences de l’Eau: Bilan et perspectives, 145–162

    Google Scholar 

  • Anderson JM (2000) Food web functioning and ecosystem processes. In: Colemab DC, Hendrix PF (eds) Invertebrates as webmasters in ecosystems. CABI Publishing, Wallunford, pp 3–24

    Chapter  Google Scholar 

  • Angly FE et al (2006) The marine viromes of four oceanic regions. PLoS Biol 4:e368

    Article  PubMed Central  PubMed  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Badejo MA, Tian G (1999) Abundance of soil mites under four agroforestry tree species with contrasting litter quality. Biol Fertil Soils 30:107–112

    Article  Google Scholar 

  • Bardgett RD (2005a) Organism interactions and soil processes. In: Crawley MJ, Little C, Southwood TRE, Ulfstrand S (eds) The biology of soil, a community and ecosystem approach. Oxford University Press, Oxford, UK, pp 57–85

    Google Scholar 

  • Bardgett RD (2005b) The diversity of life in soil. In: Crawley MJ, Little C, Southwood TRE, Ulfstrand S (eds) The biology of soil, a community and ecosystem approach. Oxford University Press, Oxford, UK, pp 24–56

    Google Scholar 

  • Beare MH, Coleman DC, Crossley DA, Hendrix PF, Odum EP (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant and Soil 170:5–22

    Article  CAS  Google Scholar 

  • Bec A, Martin-Creuzburg D, von Elert E (2006) Trophic upgrading of autotrophic picoplankton by the heterotrophic nanoflagellate Paraphysomonas sp. Limnol Oceanogr 51:1699–1707

    Article  Google Scholar 

  • Bergh O, Børsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340:467–468

    Article  CAS  PubMed  Google Scholar 

  • Breitbart M, Rohwer F (2005) Here a virus, there a virus, everywhere the same virus? Trends Microbiol 13:278–284

    Article  CAS  PubMed  Google Scholar 

  • Brown GG (1995) How do earthworms affect microfloral and faunal community diversity. Plant and Soil 170:209–231

    Article  CAS  Google Scholar 

  • Buffan-Dubau E, Carman KR (2000) Diel feeding behavior of meiofauna and their relationships with microalgal resources. Limnol Oceanogr 45:381–395

    Article  CAS  Google Scholar 

  • Carpenter SR (1988) Complex interactions in lake communities. Springer, New York

    Book  Google Scholar 

  • Carrias JF, Amblard C, Bourdier G (1998) Seasonal dynamics and vertical distribution of planktonic ciliates and their relationship to microbial food resources in the oligomesotrophic lake Pavin. Arch Hydrobiol 143:227–255

    Google Scholar 

  • Colombet J (2008) Importance de la variabilité verticale dans un lac méromictique profond: diversité et activité lysogène des communautés virales. Thèse de Doctorat, Université Blaise Pascal, 204 p

    Google Scholar 

  • Curtis TP, Sloan WT, Scannel JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99:10494–10499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cushing DH (1989) A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. J Plank Res 11:1–13

    Article  Google Scholar 

  • De Ruiter PC, Neutel AN, Moore JC (1995) Energetics, patterns of interactions strengths and stability in real ecosystems. Science 269:1257–1260

    Article  PubMed  Google Scholar 

  • De Ruiter PC, Neutel AN, Moore JC (1997) Soil foodweb interactions and modelling. In: Benckiser G (ed) Fauna in soil ecosystems. Dekker, New York, pp 363–386

    Google Scholar 

  • Degens B, Harris JA (2000) Decreases in organic C reserves in soil can reduce the catabolic diversity of soil microbial communities. Soil Biol Biochem 32:189–196

    Article  CAS  Google Scholar 

  • Delong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dolan JR (1997) Phosphorus and ammonia excretion by planktonic protists. Mar Geol 139:109–122

    Article  CAS  Google Scholar 

  • Edwards RA, Rohwer F (2005) Viral metagenomics. Nat Rev Microbiol 3:504–510

    Article  CAS  PubMed  Google Scholar 

  • Egerton-Warburton L, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496

    Article  Google Scholar 

  • Filippini M, Buesing N, Bettarel Y, Sime-Ngando T, Gessner MO (2006) Infection paradox: high abundance but low impact of freshwater benthic viruses. Appl Environ Microbiol 72:4893–4898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foissner W (1997a) Global soil ciliate (Protozoa: Ciliophora) diversity: a probability-based approach using large sample collections from Africa, Australia and Antarctica. Biodivers Conserv 5:1627–1638

    Article  Google Scholar 

  • Foissner W (1997b) Soil ciliates (Protozoa: Ciliophora) from evergreen rain forest of Australia, South America and Costa Rica: diversity and description of new species. Biol Fertil Soils 25:317–339

    Article  Google Scholar 

  • Forterre P (2007) Microbes de l’enfer. Edition Belin, Paris

    Google Scholar 

  • Fouilland E, Mostajir B (2010) Revisited phytoplanktonic carbon dependency of heterotrophic bacteria in freshwater, transitional, coastal and oceanic waters. FEMS Microbiol Ecol 73:419–429

    Article  CAS  PubMed  Google Scholar 

  • Fouilland E, Mostajir B (2011) Complementary support for the new ecological concept of “bacterial independence on contemporary phytoplankton production” in oceanic Waters. FEMS Microbiol Ecol 78:206–209

    Article  CAS  Google Scholar 

  • Fouilland E, Gosselin M, Rivkin RB, Vasseur C, Mostajir B (2007) Nitrogen uptake by heterotrophic bacteria and phytoplankton in Arctic surface waters. J Plankton Res 29:369–376

    Article  CAS  Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548

    Article  CAS  PubMed  Google Scholar 

  • Giere O (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments. Springer, Berlin/Heidelberg

    Google Scholar 

  • Grami B, Rasconi S, Niquil N, Jobard M, Saint-Béat B, Sime-Ngando T (2011) Functional effects of parasites on food web properties during the spring diatom bloom in Lake Pavin: a linear inverse modeling analysis. PLoS One 6:e23273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hedlund K, Boddy L, Preston CM (1991) Mycelial response of the soil fungus, Mortierella Isabellina, to grazing by Onychiurus armatus (collembolan). Soil Biol Biochem 23:361–366

    Article  Google Scholar 

  • Hobbie JE, Daley RJ, Jasper S (1977) Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jardillier L, Boucher D, Personnic S, Jacquet S, Thenot A, Sargos D, Amblard C, Debroas D (2005) Relative importance of nutrients and mortality factors on prokaryotic community composition in two lakes of different trophic status: microcosm experiments. FEMS Microbiol Ecol 53:429–443

    Article  CAS  PubMed  Google Scholar 

  • Kagami M, De Bruin A, Ibelings BW, Van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Article  Google Scholar 

  • Kolber ZS, Van Dover CL, Niederman RA, Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 407:177–179

    Article  CAS  PubMed  Google Scholar 

  • La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X, Drancourt M, Birtles R, Claverie JM, Raoult D (2003) A giant virus in amoebae. Science 299:2033

    Article  PubMed  Google Scholar 

  • Laval-Peuto M, Heinbokel JF, Anderson R, Rassoulzadegan F, Sherr BF (1986) Role of micro- and nanozooplankton in marine food webs. Insect Sci Appl 7:387–395

    Google Scholar 

  • Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi JP (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:3–15

    Article  Google Scholar 

  • Lawrence JR, Scharf B, Packroff G, Neu TR (2002) Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition. Microb Ecol 43:199–207

    Article  Google Scholar 

  • Lefèvre E, Bardot C, Noël C, Carrias J-F, Viscogliosi E, Amblard C, Sime-Ngando T (2007) Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ Microbiol 9:61–71

    Article  PubMed  Google Scholar 

  • Legendre L, Rassoulzadegan F (1995) Plankton and nutrient dynamics in marine waters. Ophelia 41:153–172

    Article  Google Scholar 

  • Li KW, Subba Rao DV, Harrison GW, Smith CJ, Cullen JJ, Irwin B, Platt T (1983) Autotrophic picoplankton in the tropical ocean. Science 219:292–295

    Article  CAS  PubMed  Google Scholar 

  • Liess A, Hillebrand H (2004) Direct and indirect effects in herbivore–periphyton interactions. Arch Hydrobiol 159:433–453

    Article  Google Scholar 

  • Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW (2005) Photosynthetic genes in marine viruses yield proteins during host infection. Nature 438:86–89

    Article  CAS  PubMed  Google Scholar 

  • Majdi N, Mialet B, Boyer S, Tackx M, Leflaive J, Boulêtreau S, Ten-Hage L, Julien F, Fernandez R, Buffan-Dubau E (2012a) The relationship between epilithic biofilm stability and its associated meiofauna under two patterns of flood disturbance. Fresh Sci 31:38–50

    Article  Google Scholar 

  • Majdi N, Tackx M, Buffan-Dubau E (2012b) Trophic positioning and microphytobenthic carbon uptake of biofilm-dwelling meiofauna in a temperate river. Fresh Biol 57:1180–1190

    Article  CAS  Google Scholar 

  • Mann NH (2003) Phages of the marine cyanobacterial phytoplankton. FEMS Microbiol Rev 27:17–34

    Article  CAS  PubMed  Google Scholar 

  • Maranger R, Bird DE (1996) High concentrations of viruses in the sediments of Lac Gilbert, Quebec. Microb Ecol 31:141–151

    CAS  PubMed  Google Scholar 

  • Mathieu M, Leflaive J, Ten-Hage L, de Wit R, Buffan-Dubau E (2007) Free-living nematodes affect oxygen turn-over of artificial diatom biofilms. Aquat Microb Ecol 49:281–291

    Article  Google Scholar 

  • McLean MA, Parkinson D (2000) Field evidence of the effects of the epigenic earthworm Dendrobaena octaedra on the microfungal community in pine forest floor. Soil Biol Biochem 32:351–360

    Article  CAS  Google Scholar 

  • McQueen DJ, Johannes MRS, Post JR, Steward TJ, Lean DRS (1989) Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol Monogr 59:289–310

    Article  Google Scholar 

  • Middelburg JJ, Barranguet C, Boschker HTS, Herman PMJ, Moens T, Heip CHR (2000) The fate of intertidal microphytobenthos carbon: an in situ 13C labelling study. Limnol Oceanogr 45:1224–1234

    Article  CAS  Google Scholar 

  • Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB (2001) What is the observed relationship between species richness and productivity? Ecology 82:2381–2396

    Article  Google Scholar 

  • Moens T, Traunspurger W, Bergtold M (2006) Feeding ecology of free-living benthic nematodes. In: Abebe E, Traunspurger W, Andrassy I (eds) Freshwater nematodes: ecology and taxonomy. CABI Publishing, Wallingford, pp 105–131

    Chapter  Google Scholar 

  • Moody SA, Piearce TG, Dighton J (1996) Fates of some fungal spores associated with wheat straw decomposition on passage through the guts of Lumbricus terrestris and Aporrectodea longa. Soil Biol Biochem 28:533–537

    Article  CAS  Google Scholar 

  • Moran XA, Alonso-Saez L (2011) Independence of bacteria on phytoplankton? Insufficient support for Fouilland and Mostajir’s (2010) suggested new concept. FEMS Microbiol Ecol 78:203–205

    Article  CAS  PubMed  Google Scholar 

  • Pischedda L, Cuny P, Esteves JL, Poggiale J-C, Gilbert F (2012) Spatial oxygen heterogeneity in a Hediste diversicolor irrigated burrow. Hydrobiologia 680:109–124

    Article  CAS  Google Scholar 

  • Pomeroy LR (1974) The ocean’s food web, a changing paradigm. BioSci 24:499–504

    Article  Google Scholar 

  • Pomeroy LR (1991) Status and future needs in protozoan ecology. In: Reid PC, Turley CM, Burkill PH (eds) Protozoa and their role in marine processes. Nato Asi series. Springer, New York, pp 475–492

    Chapter  Google Scholar 

  • Renault P, Stengel P (1994) Modelling oxygen diffusion in aggregated soils: anaerobiosis inside the aggregates. Soil Sci Soc Am J 58:1017–1023

    Article  CAS  Google Scholar 

  • Riemann F, Helmke E (2002) Symbiotic relations of sediment agglutinating nematodes and bacteria in detrital habitats: the enzyme-sharing concept. PSZN I Mar Ecol 23:93–113

    Article  CAS  Google Scholar 

  • Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459:207–212

    Article  CAS  PubMed  Google Scholar 

  • Roossinck MJ (2011) The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 9:99–108

    Article  CAS  PubMed  Google Scholar 

  • Schmidt O, Curry JP, Dyckmans J, Rota E, Scrimgeour CM (2004) Dual stable isotope analysis (delta C-13 and delta N-15) of soil invertebrates and their food source. Pedobiologia 48:171–180

    Article  Google Scholar 

  • Schulz HN, Jorgensen BB (2001) Big bacteria. Annu Rev Microbiol 55:105–137

    Article  CAS  PubMed  Google Scholar 

  • Sextone AJ, Revbesh NP, Parkin TB, Tiedje JM (1985) Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci Soc Am J 49:645–651

    Article  Google Scholar 

  • Sherr EB, Sherr BF (1988) Role of microbes in pelagic food webs: a revised concept. Limnol Oceanogr 33:1225–1227

    Article  Google Scholar 

  • Sieburth JMCN, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23:1256–1263

    Article  Google Scholar 

  • Sime-Ngando T (1997) Importance des virus dans la structure et le fonctionnement des réseaux trophiques microbiens aquatiques. Ann Biol 36:181–210

    Google Scholar 

  • Sime-Ngando T (2012) Phytoplankton chytridiomycosis: fungal parasites of phytoplankton and their imprints on the food web dynamics. In: Grossart HP, Reimann L, Tang KW (eds) Molecular and functional ecology of aquatic microbial symbionts, vol 3. Frontiers Microbiology, p 361

    Google Scholar 

  • Sime-Ngando T, Colombet J (2009) Viruses and prophages in aquatic ecosystems. Can J Microbiol 55:95–109

    Article  CAS  PubMed  Google Scholar 

  • Sime-Ngando T, Niquil N (2011) Disregarded microbial diversity and ecological potentials in aquatic systems. Development in hydrobiology, vol 216. Springer, Dordrecht

    Google Scholar 

  • Sime-Ngando T, Bettarel Y, Chartogne C, Sean K (2003) The imprint of wild viruses on freshwater microbial ecology. Recent Res Dev Microbiol 7:481–497

    Google Scholar 

  • Suttle CA (2005) Viruses in the sea. Nature 437:356–361

    Article  CAS  PubMed  Google Scholar 

  • Suttle CA (2007) Marine viruses – major players in the global ecosystem. Nat Rev 5:801–812

    CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2010) Invertébrés d’eau douce: systématique, biology, écologie. CNRS Éditions, Paris

    Google Scholar 

  • Thingstad TF (2000) Element of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacteria viruses in aquatic systems. Limnol Oceanogr 45:1320–1328

    Article  Google Scholar 

  • Torsvik V, Ovreas L, Thingstad TF (2002) Prokaryotic diversity: magnitude, dynamics and controlling factors. Science 296:1064–1066

    Article  CAS  PubMed  Google Scholar 

  • Verity PG (1991) Feeding in planktonic protozoans – evidence for non-random acquisition of prey. J Protozool 38:69–76

    Article  Google Scholar 

  • Wardle DA (2002) Linking the aboveground and belowground components. Princeton University Press, Princeton

    Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    Article  CAS  PubMed  Google Scholar 

  • Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6:1–11

    Article  PubMed  Google Scholar 

  • Wetzel RG, Rich PH, Miller MC, Allen HL (1972) Metabolism of dissolved and particulate detrital carbon in a temperate hard-water lake. In: Melchiorri-Santolini U, Hopton JW (eds) Detritus and its role in aquatic ecosystems, vol 29. Memoire Inst Ital Idrobiol, pp 185–243

    Google Scholar 

  • Yeates GW, Bongers T (1999) Nematode biodiversity in agroecosystems. Agric Ecosyst Environ 74:113–135

    Article  Google Scholar 

  • Yeates GW, Bongers T, De Groede RGM, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera – an outline for ecologists. J Nematol 25:315–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeates GW, Bardgett RD, Cook R, Hobbs PJ, Bowling PJ, Potter JF (1997) Faunal and microbial diversity in three Welsh grassland soils under conventional and organic managements regimes. J Appl Ecol 34:453–471

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Behzad Mostajir or Christian Amblard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mostajir, B., Amblard, C., Buffan-Dubau, E., De Wit, R., Lensi, R., Sime-Ngando, T. (2015). Microbial Food Webs in Aquatic and Terrestrial Ecosystems. In: Bertrand, JC., Caumette, P., Lebaron, P., Matheron, R., Normand, P., Sime-Ngando, T. (eds) Environmental Microbiology: Fundamentals and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9118-2_13

Download citation

Publish with us

Policies and ethics