Skip to main content

Carbon Footprint – An Environmental Sustainability Indicator of Large Scale CO2 Sequestration

  • Chapter
  • First Online:
Environmental Indicators
  • 3746 Accesses

Abstract

To slow down the degeneration of the planetary life support system atmospheric CO2 concentration must be reduced. There are no insignificant CO2 emissions since all CO2 ends-up in a single atmosphere of finite size. To minimize anthropogenic CO2 emissions and to bring its atmospheric concentration to 320 ppm, the world economies should replace fossil fuels with alternative energy sources and construct large facilities for reduction of atmospheric CO2.

Environmental indicators (EIs) gauge the burden of goods and services on the environment. The carbon footprint (CF) is the EI of greenhouse gas emissions and is measured in terms of CO2 equivalent.

This chapter brings preliminary estimation of CFs for the following CO2 reduction technologies: photosynthetic or microalgae CO2 sequestration (MCS), artificial photosynthesis (AP), ocean iron fertilization (OIF), oceanic CO2 sequestration (OCS), and terrestrial CO2 sequestration (TCS).

OIF, OCS, and TCS should not be considered when constructing the large facilities for reduction of atmospheric CO2 because each of these technologies could easily become a source of greenhouse gases. The large facilities for reduction of atmospheric CO2 should rely on MCS and AP technologies and reforestation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACO2:

atmospheric CO2

CF:

carbon footprint

CFA:

carbon footprints of affluence

CFP:

carbon footprints of population

CFT:

carbon footprints of technology

CFAP :

carbon footprint of artificial photosynthesis

CFMCS :

carbon footprint of photosynthetic or microalgae CO2 sequestration

CFOCS :

carbon footprint of oceanic CO2 sequestration

CFOIF :

carbon footprint of ocean iron fertilization

CFTCS :

carbon footprint of terrestrial CO2 sequestration

CHC:

cost of chemicals

COC:

construction costs

CO2E:

carbon dioxide equivalent

EIs:

environmental indicators

EQI:

equivalent inhabitant

GHG:

greenhouse gas

GDP:

gross domestic product

GWP:

global warming potential

LAC:

labor costs

MCF:

median carbon footprint

MPI:

marketable product income

OEN:

cost of energy consumed, excluding energy used to transport CO2 or Fe

OMC:

operation and maintenance expenses

OTC:

other expenses

PI:

pollution intensity

TRC:

cost of energy to transport CO2 or Fe via pipeline, tanker or both

References

  • Bilanovic D, Battistoni P, Cecchi F, Pavan P, Mata-Alvarez J (1999) Denitrification under high nitrate concentration and alternating anoxic conditions. Water Res 33(15):3311–3320

    Article  CAS  Google Scholar 

  • Bilanovic D, Andargatchew A, Kroeger T, Shelef G (2009) Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations – response surface methodology analysis. Energy Convers Manag 50(2):262–267

    Article  CAS  Google Scholar 

  • Bilanovic D, Holland M, Armon R (2012) Microalgal CO2 sequestering – modeling microalgae production costs. Energy Convers Manag 58:104–109

    Article  CAS  Google Scholar 

  • Boeker E, Van Grondelle R (2011) Environmental physics: sustainable energy and climate change, 3rd edn. Wiley, Chichester

    Book  Google Scholar 

  • BP (2013) Statistical Review of world energy. http://www.bp.com/statisticalreview. Cited 22 June 2013

  • Celia MA, Bachu S (2003) Geological sequestration of CO2: is leakage unavoidable and acceptable? In: Greenhouse gas control technologies – 6th international conference, Amsterdam, pp 477–482

    Google Scholar 

  • CIA (2013) The world factbook. https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html. Cited 22 June 2013

  • Cook J, Nuccitelli D, Green AS, Richardson M, Winkler B, Painting R, Way R, Jacobs P, Skuce A (2013) Quantifying the consensus on anthropogenic global warming in the scientific literature. Environ Res Lett. http://iopscience.iop.org/1748-9326/8/2/024024. Cited 22 June 2013

  • Court B, Celia AM, Nordbotten MJ, Elliot RT (2011) Active and integrated management of water resources through CO2 capture and sequestration operations. Energy Procedia 4:4221–4229

    Article  Google Scholar 

  • Diamond LW, Akinfiev NN (2003) Solubility of CO2 in water from 1.5 to 100 °C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modeling. Fluid Phase Equilib 208:265–290

    Article  CAS  Google Scholar 

  • EEA European Environment Agency (2012) Environmental indicator report 2012: ecosystem resilience and resource efficiency in a green economy in Europe. Publication Office of the European Union, Luxembourg. doi:10.2800/4874

  • EIA Energy Information Administration (2013) Coal news and markets. http://www.eia.gov/coal/news_markets. Cited 22 June 2013

  • EPA (2013) Climate change indicators in the United States. http://www.epa.gov/climatechange/science/indicators. Cited 22 June 2013

  • Farrelly JD, Evarard DC, Fagan CC, McDonnell PK (2013) Carbone sequestration and role of biological carbon mitigation: a review. Renew Sustain Energy Rev 21:712–727

    Article  CAS  Google Scholar 

  • Feldman D, Barbose G, Margolis R, Wiser R, Darghouth N, Goodrich A (2012) Photovoltaic (PV) pricing trends: historical, recent, and near-term projections – Technical report DOE/GO-102012-3839

    Google Scholar 

  • Fujioka Y, Ozaki M, Takeuchi K, Shindo Y, Herzog JH (1997) Cost comparison in various CO2 ocean disposal options. Energy Convers Manag 38(Suppl):273–277

    Article  Google Scholar 

  • Graedel TE, Allenby BR (2010) Industrial ecology and sustainable engineering. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Hansen J, Sato M, Kharecha P, Beerling D, Masson-Delmotte V, Pagani M, Raymo M, Royer DL, Zachos JC (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci J 2:217–231

    Article  CAS  Google Scholar 

  • Hansen J, Sato M, Kharecha P, von Schuckmann K (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11:13421–13449

    Article  CAS  Google Scholar 

  • Howarth WR, Santoro R, Ingraffea A (2011) Methane and the greenhouse-gas footprint of natural gas from shale formations – a letter. Clim Chang 106:679–690. doi:10.1007/s10584-011-0061-5

    Article  CAS  Google Scholar 

  • Huesemann MH, Skillman AD, Crecelius EA (2002) The inhibition of marine nitrification by ocean disposal of carbon dioxide. Mar Pollut Bull 44:142–148

    Article  CAS  Google Scholar 

  • IEA International Energy Agency (2012) CCS retrofit: analysis of globally installed coal fired power plant fleet. https://www.iea.org/publications/freepublications/. Cited 18 May 2013

  • Johnston P, Santillo D (2002) Carbon capture and sequestration: potential environmental impacts, IPCC – Working group III, Workshop on carbon dioxide capture and storage – Proceedings, Regina, Canada, 18–21 Nov 2002, pp 95–110

    Google Scholar 

  • Johnston P, Santillo D, Stringer R, Parmentier R, Hare B, Krueger M (1999) Ocean disposal/sequestration of carbon dioxide from fossil fuel production and use: an overview of rationale, techniques and implications. Greenpeace Research Laboratories Technical Note 01/99

    Google Scholar 

  • Kalyanasundaram K, Graetzel M (2010) Artificial photosynthesis: biomimetic approach to solar energy conversion and storage. Curr Opin Biotechnol 21:298–310

    Article  CAS  Google Scholar 

  • Kharecha PA, Kutscher CF, Hansen JE, Mazria E (2010) Options for near-term phase out of CO2 emissions from coal use in the United States. Environ Sci Technol 44(11):4050–4062

    Article  CAS  Google Scholar 

  • McConnell I, Li G, Brudvig WG (2010) Energy conversion in natural and artificial photosynthesis. Chem Biol Rev 17:434–447

    Article  CAS  Google Scholar 

  • NASA (2013) NASA finds 2012 sustained long-term climate warming trend. http://www.nasa.gov/topics/earth/features/2012-temps.html. Cited 22 June 2013

  • NETL National Energy Technology Laboratory (2010) Cost and performance baseline for fossil energy plants. Volume 1: Bitumenous Coal and natural gas to electricity. DOE/NETL-2010/1397

    Google Scholar 

  • OECD (2012) Looking to 2060: a global vision of long-term growth, OECD Economics Department Policy Notes, No. 15. http://www.oecd.org/eco/lookingto2060.htm. Cited 22 June 2013

  • Olivier GJJ, Janssens-Maenhout G, Peters AHWP (2012) Trends in global CO2 emissions; 2012 report, PBL Netherlands Environmental Assessment Agency, The Hague/Bilthoven, PBL publication number: 500114022

    Google Scholar 

  • Omega NASA (2013) http://www.nasa.gov/centers/ames/research/OMEGA/index.html. Cited 22 June 2013

  • Röös E, Sundberga C, Tidåkerb P, Strid I, Hanssona PA (2013) Can carbon footprint serve as an indicator of the environmental impact of meat production? Environ Indic 24:573–581

    Article  Google Scholar 

  • SIO Scripps Institution of Oceanography (2013) The keeling curve – a daily record of atmospheric carbon dioxide from Scripps Institution of Oceanography at UC San Diego. http://keelingcurve.ucsd.edu/. Cited 22 June 2013

  • Smil V (2010) Energy transitions: history, requirements, prospects. Praeger, Santa Barbara

    Google Scholar 

  • Sprent IJ (1987) The ecology of the nitrogen cycle, Cambridge studies in ecology. Cambridge University Press, Cambridge, pp 1–135

    Google Scholar 

  • Stern N (2007) The economics of climate change: the Stern review. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Stewart C, Hessami MA (2005) A study of methods of carbon dioxide capture and sequestration – the sustainability of a photosynthetic bioreactor approach. Energy Convers Manag 46:403–420

    Article  CAS  Google Scholar 

  • UCSUSA Union of Concerned Scientists U.S.A. (2013) http://www.ucsusa.org/clean_energy/coalvswind/c01.html. Cited 22 June 2013

  • UN (2004) World population to 2300, ST/ESA/SER.A/236. United Nations, New York

    Google Scholar 

  • UNCTAD (2011) Review of maritime transport 2011, UNCTAD/RTM/2011. UN New York and Geneva

    Google Scholar 

  • USEIA U.S. Energy Information Administration (2011) International energy outlook 2011. www.eia.gov/ieo/pdf/0484(2011).pdf. Cited 22 June 2013

  • Weber LC, Matthews HS (2008) Food-miles and relative climate impact of food choices in the United States. Environ Sci Technol 42:3508–3513

    Article  CAS  Google Scholar 

  • World Bank (2013) http://data.worldbank.org/indicator. Cited 22 June 2013

  • Yang A, Cui Y (2012) Global coal risk assessment: data analysis and market research. WRI working paper. World Resources Institute, Washington, DC

    Google Scholar 

  • Zhuang Q, Lu Y, Chen M (2012) An inventory of global N2O emissions from soils of natural terrestrial ecosystems. Atmos Environ 47:66–75

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragoljub Bilanovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bilanovic, D. (2015). Carbon Footprint – An Environmental Sustainability Indicator of Large Scale CO2 Sequestration. In: Armon, R., Hänninen, O. (eds) Environmental Indicators. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9499-2_4

Download citation

Publish with us

Policies and ethics