Skip to main content

Healthy Wetlands, Healthy People: Mosquito Borne Disease

  • Chapter
  • First Online:
Wetlands and Human Health

Part of the book series: Wetlands: Ecology, Conservation and Management ((WECM,volume 5))

Abstract

We evaluate the links between wetland breeding mosquitoes (Diptera: Culicidae), vector-borne disease transmission, human incidence of disease and the underlying mechanisms regulating these relationships. Mosquitoes are a diverse taxonomic group that plays a number of important roles in healthy wetlands. Mosquitoes are also the most important insect vectors of pathogens to wildlife, livestock and humans, transmitting many important diseases such as malaria, West Nile virus, and Ross River virus. Mosquitoes interact with a variety of invertebrates and vertebrates in complex communities within wetlands. These interactions regulate populations of key vector species. Healthy wetlands are characterized by intact wetland communities with increased biodiversity and trophic structure that tend to minimize dominance and production of vector mosquito species, reservoir host species and minimize risk of disease to surrounding human and animal populations. In a public health paradigm, these natural ecological interactions can be considered a direct ecosystem service—natural mitigation of vector-borne disease risk. Anthropogenic disruptions, including land-use, habitat alterations, biodiversity loss and climatic changes can compromise natural ecological processes that regulate mosquito populations and have severe human health and economic implications. Maintenance of healthy wetlands is likely to be beneficial for human and ecosystem health, and more cost effective and sustainable than chemical control of vector species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaskov JG, Mataika JU, Lawrence GW, Rabukawaqa V, Tucker M, Miles JA, Dalglish DA (1981) An epidemic of Ross River virus infection in Fiji, 1979. Am J Trop Med Hyg 30:1053–1059

    CAS  Google Scholar 

  • Allan B, Langerhans R, Ryberg W, Landesman W, Griffin N, Katz R, Oberle B, Schutzenhofer M, Smyth K, de St. Maurice A, Clark L, Crooks K, Hernandez D, McLean R, Ostfeld R, Chase J (2009) Ecological correlates of risk and incidence of West Nile virus in the United States. Oecologia 158:699–708

    Google Scholar 

  • Alonso D, Bouma MJ, Pascual M (2011) Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proc R Soc B Biol Sci 278:1661–1669

    Google Scholar 

  • Angelon K, Petranka J (2002) Chemicals of predatory mosquitofish (Gambusia affinis) influence selection of oviposition site by Culex mosquitoes. J Chem Ecol 28:797–806

    CAS  Google Scholar 

  • Arav D, Blaustein L (2006) Effects of pool depth and risk of predation on oviposition habitat selection by temporary pool dipterans. J Med Entomol 43:493–497

    Google Scholar 

  • Barton PS, Aberton JG (2005) Larval development and autogeny in Ochlerotatus camptorhynchus (Thomson) (Diptera: Culicidae) from Southern Victoria. Proc Linn Soc New South Wales 126:261–267

    Google Scholar 

  • Batzer DP, Wissinger SA (1996) Ecology of insect communities in nontidal wetlands. Annu Rev Entomol 41:75–100

    CAS  Google Scholar 

  • Blaustein L, Chase JM (2007) Interactions between mosquito larvae and species that share the same trophic level. Annu Rev Entomol 52:489–507

    CAS  Google Scholar 

  • Blaustein L, Kotler B (1993) Oviposition habitat selection by the mosquito Culiseta longiareolata: effects of conspecifics, food and green frog tadpoles. Ecol Entomol 18:104–108

    Google Scholar 

  • Bolling BG, Moore CG, Anderson SL, Blair CD, Beaty BJ (2007) Entomological studies along the Colorado Front Range during a period of intense West Nile virus activity. J Am Mosq Control Assoc 23:37–46

    Google Scholar 

  • Boully L (1998) Australian wetlands: community experiences and perceptions. In: Williams W (ed) Wetlands in a dry land: understanding for management. Environment Australia, Biodiversity Group, Canberra, pp 289–298

    Google Scholar 

  • Boyd AM, Kay BH (2001) Solving the urban puzzle of Ross River and Barmah Forest viruses. Arbovirus Res Aust 8:14–22

    Google Scholar 

  • Boyd AM, Hall RA, Gemmell RT, Kay BH (2001) Experimental infection of Australian brushtail possums, Trichosurus vulpecula (Phalangeridae: Marsupialia), with Ross River and Barmah Forest viruses by use of a natural mosquito vector system. Am J Trop Med Hyg 65:777–782

    CAS  Google Scholar 

  • Bunn SE, Davies PM (1992) Community structure of the macroinvertebrate fauna and water quality of a saline river system in south-western Australia. Hydrobiologia 248:143–160

    CAS  Google Scholar 

  • Cale DJ, Halse SA, Walker CD (2004) Wetland monitoring in the Wheatbelt of south-west Western Australia: site descriptions, waterbird, aquatic invertebrate and groundwater data. Conserv Sci West Aust 5:20–135

    Google Scholar 

  • Carver S (2010) Resistance of mammal asemblage structure to dryland salinity in a fragmented landscape. J R Soc West Aust 93:119–128

    Google Scholar 

  • Carver S, Spafford H, Storey A, Weinstein P (2009a) Dryland salinity and the ecology of Ross River virus: the ecological underpinnings of the potential for transmission. Vector-Borne Zoonotic Dis 9:611–622

    Google Scholar 

  • Carver S, Spafford H, Storey A, Weinstein P (2009b) Colonisation of ephemeral water bodies in the Wheatbelt of Western Australia by assemblages of mosquitoes (Diptera: Culicidae): role of environmental factors, habitat and disturbance. Environ Entomol 38:1585–1594

    Google Scholar 

  • Carver S, Bestall A, Jardine A, Ostfeld RS (2009c) The influence of hosts on the ecology of arboviral transmission: potential mechanisms influencing dengue, Murray Valley encephalitis and Ross River virus in Australia. Vector-Borne and Zoonotic Dis 9:51–64

    Google Scholar 

  • Carver S, Storey A, Spafford H, Lynas J, Chandler L, Weinstein P (2009d) Salinity as a driver of aquatic invertebrate colonisation behaviour and distribution in the wheatbelt of Western Australia. Hydrobiologia 617:75–90

    Google Scholar 

  • Carver S, Spafford H, Storey A, Weinstein P (2010) The roles of predators, competitors and secondary salinisation in structuring mosquito (Diptera: Culicidae) assemblages in ephemeral waterbodies of the Wheatbelt of Western Australia. Environ Entomol 39:798–810

    Google Scholar 

  • CDC (2011). Lymphatic filariasis. http://www.cdc.gov/parasites/lymphaticfilariasis/. Accessed 6 May 2011

  • CDC (2013) West Nile Virus. http://www.cdc.gov/westnile/index.html. Accessed 18 Nov 2013

  • Chase JM, Knight TM (2003) Drought-induced mosquito outbreaks in wetlands. Ecol Lett 6:1017–1024

    Google Scholar 

  • Chesson J (1984) Effect of Notonecta (Hemiptera: Notonectidae) on mosquitoes (Diptera:Culicidae): predation or selective oviposition? Environ Entomol 13:531–538

    Google Scholar 

  • Clements AN (1999) The biology of mosquitoes. Sensory reception and behaviour, vol 2. CABI Publishing, New York

    Google Scholar 

  • CSIRO and the Bureau of Meteorology (2011) Climate change in Australia. http://www.climatechangeinaustralia.gov.au/futureclimate.php. Accessed 26 April 2011

  • Cupp EW, Hassan HK, Yue X, Oldland WK, Lilley BM, Unnasch TR (2007) West Nile virus infection in mosquitoes in the Mid-South USA, 2002–2005. J Med Entomol 44:117–125

    CAS  Google Scholar 

  • Dale P (1993) Australian wetlands and mosquito control—contain the pest and sustain the environment? Wetlands (Australia) 12:1–12

    Google Scholar 

  • Dale P, Knight J (2008) Wetlands and mosquitoes: a review. Wetl Ecol Manage 16:255–276

    Google Scholar 

  • Dale PER, Knight JM (2012) Managing mosquitoes without destroying wetlands: an eastern Australian approach. Wetl Ecol Manage 20:233–242

    Google Scholar 

  • DeGroote J, Sugumaran R, Brend S, Tucker B, Bartholomay L (2008) Landscape, demographic, entomological, and climatic associations with human disease incidence of West Nile virus in the state of Iowa, USA. Int J Health Geogr 7:19

    Google Scholar 

  • Dobson A (2009) Climate variability, global change, immunity, and the dynamics of infectious diseases. Ecology 90:920–927

    Google Scholar 

  • Edgerly J, McFarland M, Morgan P, Livdahl T (1998) A seasonal shift in egg-laying behaviour in response to cues of future competition in a treehole mosquito. J Anim Ecol 67:805–818

    Google Scholar 

  • Ezenwa VO, Godsey MS, King RJ, Guptill SC (2006) Avian diversity and West Nile virus: testing associations between biodiversity and infectious disease risk. Proc R Soc B-Biol Sci 273:109–117

    Google Scholar 

  • Ezenwa VO, Milheim LE, Coffey MF, Godsey MS, King RJ, Guptill SC (2007) Land cover variation and West Nile virus prevalence: patterns, processes, and implications for disease control. Vector-Borne Zoonotic Dis 7:173–180

    Google Scholar 

  • Fonseca DM, Keyghobadi N, Malcolm CA, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC (2004a) Outbreak of West Nile virus in North America—response. Science 306:1473–1475

    CAS  Google Scholar 

  • Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC (2004b) Emerging vectors in the Culex pipiens complex. Science 303:1535–1538

    CAS  Google Scholar 

  • George R, Clarke J, English P (2006) Modern and palaeogeographic trends in the salinisation of the Western Australian Wheatbelt. Proceedings of the Australian Earth Sciences Convention 2006, Melbourne. http://www.earth2006.org.au/papers/extendedpdf/George%20Richard%20-%20Modern%20and%20palaeogeographic-extended.pdf. Accessed 22 Sept 2006

  • Gilbert B, Srivastava DS, Kirby KR (2008) Niche partitioning at multiple scales facilitates coexistence among mosquito larvae. Oikos 117:944–950

    Google Scholar 

  • Gingrich JB, Anderson RD, Williams GM, O’Connor L, Harkins K (2006) Stormwater ponds, constructed wetlands, and other best management practices as potential preeding sites for West Nile virus vectors in Delaware during 2004. J Am Mosq Control Assoc 22:282–291

    Google Scholar 

  • Githeko AK, Lindsay SW, Confalonieri UE, Patz JA (2000) Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ 78:1136–1147

    CAS  Google Scholar 

  • Gratz NG (1999) Emerging and resurging vector-borne diseases. Annu Rev Entomol 44:51–75

    CAS  Google Scholar 

  • Greenway M (2005) The role of constructed wetlands in secondary effluent treatment and water reuse in subtropical and arid Australia. Ecol Eng 25:501–509

    Google Scholar 

  • Greenway M, Dale P, Chapman H (2003) An assessment of mosquito breeding and control in four surface flow wetlands in tropical-subtropical Australia. Water Sci Technol 48:249–256

    CAS  Google Scholar 

  • Hales S, Weinstein P, Souares Y, Woodward A (1999) El Nino and the dynamics of vectorborne disease transmission. Environ Health Perspect 107:99–102

    CAS  Google Scholar 

  • Halse SA, Ruprecht JK, Pinder AM (2003) Salinisation and prospects for biodiversity in rivers and wetlands of south-west Western Australia. Aust J Bot 51:673–688

    Google Scholar 

  • Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Walker ED (2008) Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans. J Med Entomol 45:125–128

    Google Scholar 

  • Harley D, Sleigh A, Ritchie S (2001) Ross River virus transmission, infection, and disease: a cross-disciplinary review. Clin Microbiol Rev 14:909–932

    CAS  Google Scholar 

  • Heft DE, Walton WE (2008) Effects of the El Nino Southern Oscillation (ENSO) cycle on mosquito populations in southern California. J Vector Ecol 33:17–29

    Google Scholar 

  • Horwitz P, Finlayson CM (2011) Wetlands as settings for human health: incorporating ecosystem services and health impact assessment into water resource management. Bioscience 61:678–688

    Google Scholar 

  • Hubalek Z, Halouzka J (1999) West Nile fever—a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5:643–650

    CAS  Google Scholar 

  • Hurst TP, Brown MD, Kay BH (2004) Laboratory evaluation of the predation efficacy of native Australian fish on Culex annulirostris (Diptera: Culicidae). J Am Mosq Control Assoc 20:286–291

    Google Scholar 

  • Jardine A, Speldewinde P, Carver S, Weinstein P (2007) Dryland salinity and Ecosystem Distress Syndrome: human health implications. EcoHealth 4:10–17

    Google Scholar 

  • Jardine A, Lindsay MDA, Johansen CA, Cook A, Weinstein P (2008a) Impact of dryland salinity on population dynamics of vector mosquitoes (Diptera: Culicidae) of Ross River virus in inland areas of southwestern Western Australia. J Med Entomol 45:1011–1022

    CAS  Google Scholar 

  • Jardine A, Speldewinde P, Lindsay M, Cook A, Johansen C, Weinstein P (2008b) Is there an association between dryland salinity and Ross River virus disease in southwestern Australia? EcoHealth 5: 58–68

    Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    CAS  Google Scholar 

  • Juliano SA (2007) Population dynamics. J Am Mosq Control Assoc 23:265–275

    Google Scholar 

  • Juliano SA (2009) Species interactions among larval mosquitoes: context dependence across habitat gradients. Annu Rev Entomol 54:37–56

    CAS  Google Scholar 

  • Kay BH, Boyd AM, Ryan P, Hall RA (2007) Mosquito feeding patterns and natural infection of vertebrates with Ross River and Barmah Forest viruses in Brisbane, Australia. Am J Trop Med Hyg 76:417–423

    Google Scholar 

  • Keesing F, Holt RD, Ostfeld R (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498

    CAS  Google Scholar 

  • Kelly-Hope LA, Purdie DM, Kay BH (2004) Ross River virus disease in Australia, 1886–1998, with analysis of risk factors associated with outbreaks. J Med Entomol 41:133–150

    Google Scholar 

  • Kennedy J (1942) On water-finding and oviposition by captive mosquitoes. Bull Entomol Res 32:279–301

    Google Scholar 

  • Kiflawi M, Blaustein L, Mangel M (2003) Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predation and conspecific larval density. Ecol Entomol 28:168–173

    Google Scholar 

  • Kilpatrick AM, Kramer LD, Campbell SR, Alleyne EO, Dobson AP, Daszak P (2005) West Nile virus risk assessment and the bridge vector paradigm. Emerg Infect Dis 11:425–429

    Google Scholar 

  • Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P (2006a) West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4:e82

    Google Scholar 

  • Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD (2006b) Host heterogeneity dominates West Nile virus transmission. Proc R Soc B-Biol Sci 273:2327–2333

    Google Scholar 

  • Kilpatrick AM, LaDeau SL, Marra PP (2007) Ecology of west nile virus transmission and its impact on birds in the western hemisphere. Auk 124:1121–1136

    Google Scholar 

  • Kilpatrick AM, Fonseca DM, Ebel GD, Reddy MR, Kramer L.D (2010) Spatial and temporal variation in vector competence of Culex pipiens and Cx. restuans mosquitoes for West Nile virus. Am J Trop Med Hyg 83:607–613

    Google Scholar 

  • Knight RL, Walton WE, O’Meara GF, Reisen WK, Wass R (2003) Strategies for effective mosquito control in constructed treatment wetlands. Ecol Eng 21:211–232

    Google Scholar 

  • Komar N (2003) West Nile virus: epidemiology and ecology in North America. Adv Virus Res 61:185–234

    Google Scholar 

  • Lafferty KD (2009) The ecology of climate change and infectious diseases. Ecology 90:888–900

    Google Scholar 

  • Laird M (1988) The natural history of larvel mosquito habitats. Academic Press Limited, London

    Google Scholar 

  • Landesman WJ, Allan BF, Langerhans RB, Knight TM, Chase JM (2007) Inter-annual associations between precipitation and human incidence of West Nile virus in the United States. Vector-Borne Zoonotic Dis 7:337–343

    Google Scholar 

  • Lau C, Weinstein P, Slaney D (2012) Imported cases of Ross River virus disease in New Zealand—a travel medicine perspective. Travel Med Infect Dis 10:129–134

    Google Scholar 

  • Lindsay M, Oliveira N, Jasinska E, Johansen C, Harrington S, Wright A. E, Smith D (1996) An outbreak of Ross River virus disease in southwestern Australia. Emerg Infect Dis 2:117–120

    CAS  Google Scholar 

  • Lindsay MDA, Breeze AL, Harrington SA, Johansen CA, Broom AK, Gordon CJ, Maley FM, Power SL, Jardine A, Smith DW (2005) Ross River and Barmah Forest viruses in Western Australia, 2000/01–2003/04: contrasting patterns of disease activity. Arbovirus Res Aust 9:194–201

    Google Scholar 

  • Lindsay MD, Jardine A, Johansen CA, Wright AE, Harrington SA, Weinstein P (2007) Mosquito (Diptera: Culicidae) fauna in inland areas of South West Western Australia. Aust J Entomol 46:60–64

    Google Scholar 

  • McKenzie NL, Burbidge AH, Rolfe JK (2003) Effect of salinity on small, ground-dwelling animals in the Western Australian Wheatbelt. Aust J Bot 51:725–740

    Google Scholar 

  • McKenzie NL, Gibson N, Keighery GJ, Rolfe JK (2004) Patterns in biodiversity of terrestrial environments in the Western Australian Wheatbelt. Records of the Western Australian Museum Supplement No. 67, pp 293–335

    Google Scholar 

  • Merritt RW, Dadd RH, Walker ED (1992) Feeding behavior, natural food, and nutritional relationships of larval mosquitos. Annu Rev Entomol 37:349–376

    CAS  Google Scholar 

  • Mian L, Mulla M (1986) Survival and ovipositional response of Culex quinquefasistus Say (Diptera: Culicidae) to sewage effluent. Bull Soc Vector Ecol 11:1944–1946

    Google Scholar 

  • Mian LS, Lovett J, Dhillon MS (2009) Effect of effluent-treated water on mosquito development in simulated ponds at the Prado wetlands of southern California. J Am Mosq Control Assoc 25:347–355

    Google Scholar 

  • Mills JN, Gage KL, Khan AS (2010) Potential Influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ Health Perspect: doi:10.1289/ehp.0901389

    Google Scholar 

  • Mokany A, Shine R (2003) Oviposition site selection by mosquitoes is affected by cues from conspecific larvae and anuran tadpoles. Aust Ecol 28:33–37

    Google Scholar 

  • Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben-Horin T, de Moor E, McNally A, Pawar S, Ryan SJ, Smith TC, Lafferty KD (2013) Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol Lett 16:22–30

    Google Scholar 

  • Muhar A, Dale PE, Thalib L, Arito E (2000) The spatial distribution of Ross River virus infections in Brisbane: Significance of residential location and relationships with vegetation types. Environ Health Prev Med 4:184–189

    CAS  Google Scholar 

  • Munga S, Minakawa N, Zhou GF, Mushinzimana E, Barrack OOJ, Githeko AK, Yan GY (2006) Association between land cover and habitat productivity of malaria vectors in western Kenyan highlands. Am J Tropical Med Hyg 74:69–75

    Google Scholar 

  • O’Sullivan L, Jardine A, Cook A, Weinstein P (2008) Deforestation, mosquitoes, and ancient Rome: lessons for today. BioScience 58:756–760

    Google Scholar 

  • Olson SH, Gangnon R, Silveira GA, Patz JA (2010) Deforestation and malaria in Mancio Lima county, Brazil. Emerg Infect Dis 16:1108

    Google Scholar 

  • Orr BK, Resh VH (1992) Influence of Myriophyllum aquaticum cover on Anopheles mosquito abundance, oviposition, and larval microhabitat. Oecologia 90:474–482

    Google Scholar 

  • Ostfeld RS (2009) Climate change and the distribution and intensity of infectious diseases. Ecology 90:903–905

    Google Scholar 

  • Ostfeld RS, Keesing F (2000a) Biodiversity and disease risk: the case of Lyme disease. Conserv Biol 14:722–728

    Google Scholar 

  • Ostfeld RS, Keesing F (2000b) The function of biodiversity in the ecology of vector-borne zoonotic diseases. Can J Zool 78: 2061–2078

    Google Scholar 

  • OĘĽSullivan L, Jardine A, Cook A, Weinstein P (2008) Deforestation, mosquitoes, and ancient Rome: lessons for today. BioScience 58:756–760

    Google Scholar 

  • Paaijmans KP, Read AF, Thomas MB (2009) Understanding the link between malaria risk and climate. Proc Natl Acad Sci U S A 106: 13844–13849

    CAS  Google Scholar 

  • Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB (2010) Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci U S A 107:15135–15139

    CAS  Google Scholar 

  • Pascual M, Ahumada JA, Chaves LF, Rodo X, Bouma M (2006) Malaria resurgence in the East African highlands: temperature trends revisited. Proc Natl Acad Sci U S A 103:5829–5834

    CAS  Google Scholar 

  • Pascual M, Cazelles B, Bouma MJ, Chaves LF, Koelle K (2008) Shifting patterns: malaria dynamics and rainfall variability in an African highland. Proc R Soc B-Biol Sci 275:123–132

    CAS  Google Scholar 

  • Patz JA, Confalonieri UEC (2005) Human health: ecosystem regulation of infectious diseases, conditions and trends, The millennium ecosystem assessment report

    Google Scholar 

  • Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M, Epstein J, Wolfe ND, Kilpatrick AM, Foufopoulos J, Molyneux D, Bradley DJ, Working Group on Land Use Change and Disease Emergence (2004) Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ Health Perspect 112:1092–1098

    Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317

    CAS  Google Scholar 

  • Petersen LR, Hayes EB (2004) Westward ho? The spread of West Nile virus. N Engl J Med 351:2257–2259

    CAS  Google Scholar 

  • Petranka JW, Fakhoury K (1991) Evidence of chemically mediated avoidance response of ovipositing insects to blue-gills and green frog tadpoles. Copeia 1991:234–239

    Google Scholar 

  • Pinder AM, Halse SA, McRae JM, Shiel RJ (2005) Occurence of aquatic invertebrates of the wheatbelt region of Western Australia in relation to salinity. Hydrobiologia 543:1–24

    Google Scholar 

  • Rapport DJ, Regier HA, Hutchinson TC (1985) Ecosystem behavior under stress. Am Nat 125:617–640

    Google Scholar 

  • Reisen WK, Lothrop HD, Chiles R, Madon M, Cossen C, Woods L, Husted S, Kramer V, Edman J (2004) West Nile virus in California. Emerg Infect Dis 10:1369–1378

    Google Scholar 

  • Reisen WK, Cayan D, Tyree M, Barker CM, Eldridge B, Dettinger M (2008) Impact of climate variation on mosquito abundance in California. J Vector Ecol 33:89–98

    Google Scholar 

  • Reiter P (2008) Global warming and malaria: knowing the horse before hitching the cart. Malar J 7:1–9

    Google Scholar 

  • Reiter P (2010) Nile virus in Europe: understanding the present to gauge the future. Eurosurveillance 15:19508

    CAS  Google Scholar 

  • Rey J, Walton W, Wolfe R, Connelly C, #039, Connell S, Berg J, Sakolsky-Hoopes G, Laderman A (2012) North American wetlands and mosquito control. Int J Environ Res Public Health 9:4537–4605

    Google Scholar 

  • Rohr JR, Dobson AP, Johnson PTJ, Kilpatrick AM, Paull SH, Raffel TR, Ruiz-Moreno D, Thomas MB (2011) Frontiers in climate change-disease research. Trends Ecol Evol. (In Press)

    Google Scholar 

  • Russell RC (1999) Constructed wetlands and mosquitoes: health hazards and management options—an Australian perspective. Ecol Eng 12:107–124

    Google Scholar 

  • Russell RC (2002) Ross river virus: ecology and distribution. Annu Rev Entomol 47:1–31

    CAS  Google Scholar 

  • Russell RC (2009) Mosquito-borne disease and climate change in Australia: time for a reality check. Aust J Entomol 48:1–7

    Google Scholar 

  • Russell RC, Cope SE, Yound AJ, Hueston L (1998) Combatting the enemy—mosquitoes and Ross River virus in a joint military exerciese in tropical Australia. Am J Trop Med Hyg 59:S307

    Google Scholar 

  • Sabbatani S, Fiorino S, Manfredi R (2010) The emerging of the fifth malaria parasite (Plasmodium knowlesi). A public health concern? Braz J Infect Dis 14:299–309

    Google Scholar 

  • Sanford MR, Chan K, Walton WE (2005) Effects of inorganic nitrogen enrichment on mosquitoes (Diptera: Culicidae) and the associated aquatic community in constructed treatment wetlands. J Med Entomol 42:766–776

    CAS  Google Scholar 

  • Schafer ML, Lundkvist E, Landin J, Persson TZ, Lundstrom JO (2006) Influence of landscape structure on mosquitoes (Diptera: Culicidae) and dytiscids (Coleoptera: Dytiscidae) at five spatial scales in Swedish wetlands. Wetlands 26:57–68

    Google Scholar 

  • Silberbush A, Blaustein L (2008) Oviposition habitat selection by a mosquito in response to a predator: are predator-released kairomones air-borne cues? J Vector Ecol 33:208–211

    Google Scholar 

  • Silver J (2008) Mosquito ecology: field sampling methods, vol 3, 3 edn. Springer, New York

    Google Scholar 

  • Sinka M, Bangs M, Manguin S, Coetzee M, Mbogo C, Hemingway J, Patil A, Temperley W, Gething P, Kabaria C, Okara R, Van Boeckel T, Godfray HC, Harbach R, Hay S (2010) The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic precis. Parasites Vectors 3:117

    Google Scholar 

  • Slaney D, Derraik JGB, Weinstein P (2010) Driving disease emergence: will land-use changes beat climate change to the punch? N Z Med J 123:1–3

    Google Scholar 

  • Smithburn KC, Jacobs HR (1942) Neutralization-tests against neurotropic viruses with sera collected in Central Africa. J Immunol 44:9–23

    Google Scholar 

  • Spencer M, Blaustein L, Schwartz SS, Cohen JE (1999) Species richness and the proportion of predatory animal species in temporary freshwater pools: relationships with habitat size and permanence. Ecol Lett 2:157–166

    Google Scholar 

  • Spencer M, Blaustein L, Cohen JE (2002) Oviposition habitat selection by mosquitoes (Culiseta longiareolata) and consequences for population size. Ecology 83:669–679

    Google Scholar 

  • Spielman A, Andreadis TG, Apperson CS, Cornel AJ, Day JF, Edman JD, Fish D, Harrington LC, Kiszewski AE, Lampman R, Lanzaro GC, Matuschka FR, Munstermann LE, Nasci RS, Norris DE, Novak RJ, Pollack RJ, Reisen WK, Reiter P, Savage HM, Tabachnick WJ, Wesson DM (2004) Outbreak of West Nile virus in North America. Science 306:1473–1473

    CAS  Google Scholar 

  • Steinman A, Banet-Noach C, Tal S, Levi O, Simanov L, Perk S, Malkinson M, Shpigel N (2003) West Nile virus infection in crocodiles. Emerg Infect Dis 9:887–889

    Google Scholar 

  • Sudomo M, Chayabejara S, Duong S, Hernandez L, Wu WP, Bergquist R (2010) Elimination of Lymphatic Filariasis in Southeast Asia. Advances in Parasitology 72:205–233

    Google Scholar 

  • Swaddle JP, Calos SE (2008) Increased avian diversity is associated with lower incidence of human West Nile infection: observation of the dilution effect. Plos One 3:e2488

    Google Scholar 

  • Taylor MJ, Hoerauf A, Bockarie M (2010) Lymphatic filariasis and onchocerciasis. Lancet 376:1175–1185

    Google Scholar 

  • Thullen JS, Sartoris JJ, Walton WE (2002) Effects of vegetation management in constructed wetland treatment cells on water quality and mosquito production. Ecol Eng 18:441–457

    Google Scholar 

  • Tsai TF, Popovici F, Cernescu C, Campbell GL, Nedelcu NI (1998) West Nile encephalitis epidemic in southeastern Romania. Lancet 352: 767–771

    CAS  Google Scholar 

  • Tucker P, Gilliland J (2007) The effect of season and weather on physical activity: a systematic review. Public Health 121:909–922

    CAS  Google Scholar 

  • Turell MJ, Dohm DJ, Sardelis MR, Guinn MLO, Andreadis TG, Blow JA (2005) An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 42:57–62

    Google Scholar 

  • van Schie C Spafford H Carver S Weinstein P (2009) The salinity tolerance of Aedes camptorhynchus (Diptera: Culicidae) from two regions of southwestern Australia. Aust J Entomol 48:293–299

    Google Scholar 

  • Verhoeven JTA, Beltman B, Bobbink R, Whigham DF, Vymazal J, Greenway M, Tonderski K, Brix H, Mander Ăś (2006) Constructed wetlands for wastewater treatment. Wetlands and Natural Resource Management, vol 190. Springer, Berlin, pp 69–96

    Google Scholar 

  • Walton W, Van Dam A, Popko D 2009. Ovipositional responses of two Culex (Diptera: Culicidae) species to larvivorous fish. J Med Entomol 46:1338–1343

    Google Scholar 

  • Washburn J (1995) Regulatory factors affecting larval mosquito populations in container and pool habitats: implications for biological control. J Am Mosq Control Assoc 11:279–283

    CAS  Google Scholar 

  • Wellborn GA, Skelly DK, Werner EE (1996) Mechanisms creating community structure across a freshwater habitat gradient. Annu Rev Ecol Syst 27:337–363

    Google Scholar 

  • Whelan P, Merianos A, Hayes G, Krause V (1997) Ross River virus transmission in Darwin, Northern Territory, Australia. Arbovirus Res Aust 7:337–345

    Google Scholar 

  • WHO (2010) World malaria report: 2010. WHO Press, Geneva. http://www.who.int/malaria/publications/atoz/9789241564106/en/index.html. Accessed 6 May 2011

  • Yadouleton A, N’Guessan R, Allagbe H, Asidi A, Boko M, Osse R, Padonou G, Kinde G, Akogbeto M (2010) The impact of the expansion of urban vegetable farming on malaria transmission in major cities of Benin. Parasites & Vectors 3:118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Carver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carver, S., Slaney, D., Leisnham, P., Weinstein, P. (2015). Healthy Wetlands, Healthy People: Mosquito Borne Disease. In: Finlayson, C., Horwitz, P., Weinstein, P. (eds) Wetlands and Human Health. Wetlands: Ecology, Conservation and Management, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9609-5_6

Download citation

Publish with us

Policies and ethics