Skip to main content

Isotope Signature of Ammonoid Shells

  • Chapter
  • First Online:
Ammonoid Paleobiology: From anatomy to ecology

Part of the book series: Topics in Geobiology ((TGBI,volume 43))

Abstract

Geochemical analyses of ammonoid shells provide an independent and objective data set to evaluate life and habitat of the animal. This uniformitarian consideration, in combination with functional morphology and physical evidence for ecology or physiology, potentially delivers a significant advantage for new insights in paleoecology. One difficulty is that ammonoids as a proxy carrier are assumed to be mobile organisms. In contrast to stationary proxy carriers like benthic bivalves, it is difficult to impossible to estimate absolute depth or locality in which a certain proxy was recorded. Although the temperature proxy is very informative, it could indicate alternative scenarios; shallower calcification depth or calcification in the warmer season. When the calcification temperature is calibrated against the thermal structure of the water column, the proxy records would be fully understood. Therefore, providing the external frame of references is significantly important for getting better insights from geochemical signatures on ammonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson TF, Popp BN, Williams AC, Ho L-Z, Hudson JD (1994) The stable isotopic record of fossils from the Peterborough Member, Oxford Clay Formation (Jurassic), UK: palaeoenvironmental implications. J Geol Soc Lond 151:125–138

    Google Scholar 

  • Auclair A-C, Lecuyer C, Bucher H, Sheppard SMF (2004) Carbon and oxygen isotope composition of Nautilus macromphalus: a record of thermocline waters off New Caledonia. Chem Geol 207:91–100

    Google Scholar 

  • Austin WEN, James RH (2008) Biogeochemical controls on palaeoceanographic environmental proxies. Geological Society, London

    Google Scholar 

  • Barker S, Cacho I, Benway H, Tachikawa K (2005) Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: a methodological overview and data compilation for the Last Glacial Maximum. Quat Sci Rev 24:821–834

    Google Scholar 

  • Bassinot FC, Mélières F, Gehlen M, Levi C, Labeyrie L (2004) Crystallinity of foraminifera shells: A proxy to reconstruct past bottom water CO3 = changes? Geochem Geophys Geosy 10.1029/2003gc000668

    Google Scholar 

  • Batt RJ (1991) Sutural amplitude of ammonite shells as a paleoenvironmental indicator. Lethaia 24:219–225

    Google Scholar 

  • Bayer U, McGhee GR (1984) Iterative evolution of Middle Jurassic ammonites faunas. Lethaia 17:1–16

    Google Scholar 

  • Bemis BE, Spero HJ, Bijima J, Lea DW (1998) Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanogr 13:150–160

    Google Scholar 

  • Bettencourt V, Guerra A (1999) Carbon- and oxygen-isotope composition of the cuttlebone of Sepia officinalis: a tool for predicting ecological information? Mar Biol 133:651–657

    Google Scholar 

  • Bice KL, Norris RD (2002) Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian-Turonian). Paleoceanogr 17:22-1–22-17

    Google Scholar 

  • Bigg GR, Rohling EJ (2000) An oxygen isotope data set for marine waters. J Geophys Res 105(C4):8527–8535

    Google Scholar 

  • Brand U, Veizer J (1980) Chemical Diagenesis of a multicomponent carbonate system –1: trace elements. J Sediment Petrol 50:1219–1236

    Google Scholar 

  • Brand U, Veizer J (1981) Chemical diagensis of a multicomponent carbonate system –2: stable isotopes. J Sediment Petrol 51:987–997

    Google Scholar 

  • Bucher H, Landman NH, Klofak SM, Guex J (1996) Mode and rate of growth in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum, New York

    Google Scholar 

  • Buddemeier RW, Maragos JE, Knutson DW (1974) Radiographic studies of reef coral exoskeletons: Rates and patterns of coral growth. J Exp Mar Biol Ecol 14:179–199

    Google Scholar 

  • Came RE, Eiler JM, Veizer J, Azmy K, Brand U, Weidman CR (2007) Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era. Nature 449:198–U193

    Google Scholar 

  • Carlson BA, McKibben JN, deGruy MV (1984) Telemetric investigation of vertical migration of Nautilus belauensis. Pac Sci 38:183–188

    Google Scholar 

  • Cecca F (1992) Ammonite habitats in the Early Tithonian of Western Tethys. Lethaia 25:257–267

    Google Scholar 

  • Chamberlain JA (1976) Flow patterns and drag coefficients of cephalopod shells. Paleobiology 19:539–563

    Google Scholar 

  • Cherel Y, Hobson KA (2005) Stable isotopes, beaks and predators: a new tool to study the trophic ecology of cephalopods, including giant and colossal squids. Proceedings. Biol sci/ Royal Soc 272:1601–1607

    Google Scholar 

  • Chikaraishi Y, Kashiyama Y, Ogawa NO, Kitazato H, Ohkouchi N (2007) Metabolic control of nitrogen isotope composition of amino acids in macroalgae and gastropods: implications for aquatic food web studies. Mar Ecol Prog Ser 342:85–90

    Google Scholar 

  • Chikaraishi Y, Ogawa NO, Kashiyama Y, Takano Y, Suga H, Tomitani A, Miyashita H, Kitazato H, Ohkouchi N (2009) Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. limin Oceanogr Methods 7:740–750

    Google Scholar 

  • Cochran JK, Landman NH (1984) Radiometric determination of the growth-rate of Nautilus in nature. Nature 308:725–727

    Google Scholar 

  • Cochran JK, Landman NH (1993) Using radioisotopes: to determine growth rates of marine organisms. J Chem Educ 70:749–754

    Google Scholar 

  • Cochran JK, Rye DM, Landman NH (1981) Growth rate and habitat of Nautilus pompilius inferred from radioactive and stable isotope studies. Paleobiology 7:469–480

    Google Scholar 

  • Cochran JK, Landman NH, Turekian KK, Michard A, Schrag DP (2003) Paleoceanography of the Late Cretaceous (Maastrichtian) Western Interior Seaway of North America: evidence from Sr and O isotopes. Palaeogeogr Palaeocl 191:45–64

    Google Scholar 

  • Cochran JK, Kallenberg K, Landman NH, Harries PJ, Weinreb D, Turekian KK, Beck AJ, Cobban WA (2010) Effect of diagenesis on the Sr, O and C isotope composition of Late Cretaceous mollusks from the Western Interior Seaway of North America. Am J Sci 310:69–88

    Google Scholar 

  • Crocker KC, DeNio MJ, Ward PD (1985) Stable isotopic investigation of early development in extant and fossil chambered cephalopods I. Oxygen isotopic composition of eggwater and carbon isotopic composition of siphuncle organic matter in Nautilus. Geochim Cosmochim Acta 49:2527–2532

    Google Scholar 

  • Davies TT, Hooper PR (1963) The determination of the calcite: aragonite ratio in mollusc shells by X- ray diffraction. Mineral Mag 33:608–612

    Google Scholar 

  • Dean WED, Arthur MA (1998) Stratigraphy and paleoenvironments of the Cretaceous Western Interior Seaway, USA. SEPM, Tusa

    Google Scholar 

  • Dennis KJ, Cochran JK, Landman NH, Schrag DP (2013) The climate of the Late Cretaceous: new insights from the application of the carbonate clumped isotope thermometer to Western Interior Seaway macrofossil. Earth Planet Sc Lett 362:51–65

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB (1973) Floatation mechanisms in modern and fossil cephalopods. Adv Mar Biol 11:197–268

    Google Scholar 

  • Dunstan AJ, Ward PD, Marshall NJ (2011) Vertical Distribution and Migration Patterns of Nautilus pompilius. Plos One 6:e16311

    Google Scholar 

  • Ebel K (1983) Berechnungen zur Schwebefähigkeit von Ammoniten. Neues Jahrb Geol Paläontl, Mh 1983:614–640

    Google Scholar 

  • Ebel K (1992) Mode of life and soft body shape of heteromorph ammonites. Lethaia 25:179–193

    Google Scholar 

  • Eichler R, Ristedt H (1966) Isotopic evidence on the early life history of Nautilus pompilius (Linné). Science 153:734–736

    Google Scholar 

  • Eiler JM, Schauble E (2004) 18O13C16O in Earth’s atmosphere. Geochim Cosmochim Acta 68:4767–4777

    Google Scholar 

  • Eiler JM (2007) “Clumped-isotope” geochemistry—the study of naturally-occurring, multiply-substituted isotopologues. Earth Planet Sc Lett 262:309–327

    Google Scholar 

  • Elliot M, deMenocal PB, Linsley BK, Howe SS (2003) Environmental controls on the stable isotopic composition of Mercenaria mercenaria: Potential application to paleoenvironmental studies. Geochem Geophy Geosy doi:10.1029/2002GC000425

    Google Scholar 

  • Emiliani C (1954) Temperatures of Pacific bottom water and polar superficial waters during the Tertiary. Science 119:853–855

    Google Scholar 

  • Enmar R, Stein M, Bar-Matthews M, Sass E, Katz A, Lazar B (2000) Diagenesis in live corals from the Gulf of Aqaba. I. The effect on paleo-oceanography tracers. Geochim Cosmochim Acta 64:3123–3132

    Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1325

    Google Scholar 

  • Fairbanks RG, Wiebe PH, Bé AWH (1980) Vertical distribution and isotopic compositoiin of living planktonic foraminifera in the wetern North Atlantic. Science 207:61–63

    Google Scholar 

  • Fairbanks RG, Evans MN, Rubenstone JL, Mortlock RA, Broad K, Moore MD, Charles CD (1997) Evaluating climate indices and their geochemical proxies measured in corals. Coral Reefs 16:16S93–S100

    Google Scholar 

  • Fatherree JW, Harries PJ, Quinn TM (1998) Oxygen and carbon isotopic “dissection” of Baculites compressus (Mollusca: Cephalopoda) from the Pierre Shale (Upper Campanian) of South Dakota: implications for paleoenvironmental reconstructions. Palaios 13:376–385

    Google Scholar 

  • Friedrich O, Norris RD, Erbacher J (2012) Evolution of middle to Late Cretaceous oceans—A 55 m.y. record of Earth’s temperature and carbon cycle. Geology 40:107–110

    Google Scholar 

  • Gagan MK, Ayliffe LK, Hopley D, Cali JA, Mortimer GE, Chappell J, McCulloch MT, Head MJ (1998) Temperature and surface-ocean water balance of the mid-Holocene tropical Western Pacific. Science 279:1014–1018

    Google Scholar 

  • Gagan MK, Ayliffe LK, Beck JW, Cole JE, Druffel ERM, Dunbar RB, Schrag DP (2000) New views of tropical paleoclimates from corals. Quat Sci Rev 19:45–64

    Google Scholar 

  • Gat JR, Mook WG, J. MHA (2001) Environmental isotopes in the hydrological cycle: principles and applications, Volume II atmospheric water. International Atomic Energy Agency and United Nations Educational, Scientific and Cultural Organization, Paris

    Google Scholar 

  • Geyh M (2001) Environmental isotopes in the hydrological cycle: principles and applications, Volume IV groundwater saturated and undersaturated zone. International Atomic Energy Agency and United Nations Educational, Scientific and Cultural Organization, Paris

    Google Scholar 

  • Ghosh P, Adkins J, Affek H, Balta B, Guo WF, Schauble EA, Schrag D, Eller JM (2006) 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70:1439–1456

    Google Scholar 

  • Ghosh P, Eiler J, Campana SE, Feeney RF (2007) Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths. Geochim Cosmochim Acta 71:2736–2744

    Google Scholar 

  • Greenwald L, Ward PD, Greenwald OE (1980) Cameral liquid transport and buoyancy control in chambered Nautilus (Nautilus macromphalus). Nature 286:55–56

    Google Scholar 

  • Greenwald KP, Cook CB, Ward P (1982) The structure of the chambered Nautilus siphuncle: The siphuncular epithelium. J Morphol 172:5–22

    Google Scholar 

  • Grossman EL (1993) Evidence that inoceramid bivalves were benthic and harbored chemosynthetic symbionts: comment and reply. Geology 21:94–95

    Google Scholar 

  • Grossman EL (2012) Oxygen isotope stratigraphy. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012. Elsevier, Oxford

    Google Scholar 

  • Grossman EL, Ku TL (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem Geol 59:59–74

    Google Scholar 

  • Hayasaka S, Saisho T, Kakinuma Y, Shinomiya A, Oki K, Hamada T, Tanabe K, Kanie Y, Hattori M, Vande Vusse F, Alcala L, Cordero PA, Cabrera J, J., Garcia R, G. (1982) Field study on the habitat of Nautilus in the environments of Cebu and Negros Islands, the Philippines. Mem Kagoshima Univ Res Cent S Pac 3:67–137

    Google Scholar 

  • Hayasaka S, Oki K, Tanabe K, Saisho T, Shinomiya A (1987) On the habitat of Nautilus pompilius in Tañon Strait (Philippines) and the Fiji Islands. In: Saunders WB, Landman NH (eds) Natilus: the biology and paleobiology of a living fossil. Plenum, New York

    Google Scholar 

  • Henderson GM (2002) New oceanic proxies for paleoclimate. Earth Planet Sc Lett 203:1–13

    Google Scholar 

  • Heptonstall WB (1970) Buoyancy control in ammonoids. Lethaia 3:317–328

    Google Scholar 

  • Hewitt RA, Westermann GEG (1987) Function of complexly fluted septa in ammonoid shells II. Septal evolution and conclusions. Neues Jahrb Geol und Paontol, Ab 174:135–169

    Google Scholar 

  • Hill PS, Tripati AK, Schauble EA (2014) Theoretical constraints on the effects of pH, salinity, and temperature on clumped isotope signatures of dissolved inorganic carbon species and precipitating carbonate minerals. Geochim Cosmochim Acta 125:610–652

    Google Scholar 

  • Hillaire-Marcel C, de Vernal A (2008) Proxies in Late Cenozoic paleoceanography. Elsevier, Oxford

    Google Scholar 

  • Hobson KA, Cherel Y (2006) Isotopic reconstruction of marine food webs using cephalopod beaks: new insight from captively raised Sepia officinalis. Can J Zool 84:766–770

    Google Scholar 

  • Huber BT, Norris RD, MacLeod KG (2002) Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30:123–126

    Google Scholar 

  • Hudson JD, Anderson TF (1989) Ocean temperatures and isotopic compositions through time. Trans Royal Soc Edinb Earth Sci 80:183–192

    Google Scholar 

  • Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Google Scholar 

  • International Atomic Energy Agency (IAEA) (1995) Reference and intercomparison materials for stable isotopes of light elements. IAEA, Vienna

    Google Scholar 

  • Ishimura T, Tsunogai U, Hasegawa S, Nakagawa F, Oi T, Kitazato H, Suga H, Toyofuku T (2012) Variation in stable carbon and oxygen isotopes of individual benthic foraminifera: tracers for quantifying the magnitude of isotopic disequilibrium. Biogeosciences 9:4353–4367

    Google Scholar 

  • Jacobs D, Landman NH (1993) Nautilus—a poor model for the function and behavior of ammonids? Lethaia 26:101–111

    Google Scholar 

  • Jacobs DK (1992) Shape, drag, and power in ammonoid swimming. Paleobiology 18:203–220

    Google Scholar 

  • Jacobs DK, Chamberlain JA (1996) Buoyancy and hydrodynamics in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Jacobs DK, Landman NH, Chamberlain JA (1994) Ammonite shell shape covaries with facies and hydrodynamics: iterative evolution as a response to changes in basinal environment. Geology 22:905–908

    Google Scholar 

  • Jones DS, Quitmyer IR (1996) Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios 11:340–346

    Google Scholar 

  • Jones DS, Williams DF, Romanek CS (1986) Life history of symbiont-bearing giant clams from stable isotope profiles. Science 231:46–48

    Google Scholar 

  • Jordan R, Stahl W (1970) Isotopische Paläotemperatur Bestimmungen an jurassischen Ammoniten and grundsätzliche Voraussetzungen für diese Methode. Geol Jahrb 89:33–62

    Google Scholar 

  • Kanie Y, Fukuda Y, Nakayama H, Seki K, Hattori M (1980) Implosion of living Nautilus under increased pressure. Paleobiology 6:44–47

    Google Scholar 

  • Kashiyama Y, Ogawa NO, Chikaraishi Y, Kashiyama N, Sakai S, Tanabe K, Ohkouchi N (2010) Reconstructing the life history of modern and fossil nautiloids based on the nitrogen isotopic composition of shell organic matter and amino acids. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods—present and past. Tokai University Press, Tokyo

    Google Scholar 

  • Kawabe F (2003) Relationship between mid-Cretaceous (upper Albian–Cenomanian) ammonoid facies and lithofacies in the Yezo forearc basin, Hokkaido, Japan. Cretaceous Res 24:751–763

    Google Scholar 

  • Kim ST, O’Neil JR, Hillaire-Marcel C, Mucci A (2007) Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochim Cosmochim Acta 71:4704–4715

    Google Scholar 

  • Klug C, Riegraf W, Lehmann J (2012) Soft-part preservation in heteromorph ammonites from the Cenomanian-Turonian Boundary Event (OAE 2) in north-west Germany. Palaeontology 55(6):1307–1331

    Google Scholar 

  • Kruta I, Landman N, Rouget I, Cecca F, Tafforeau P (2011) The role of ammonites in the Mesozoic marine food web revealed by jaw preservation. Science 331:70–72

    Google Scholar 

  • Kulm LD, Suess E, Moore JC, Carson B, Lewis T, Ritger SD, Kadko DC, Thornburg TM, Embley RW, Rugh WD, Massoth GJ, Langseth MG, Cochrane GR, Scamman RL (1986) Oregon subduction zone: venting, fauna, and carbonates. Science 231:561–231

    Google Scholar 

  • Landman NH (1983) Ammonoid growth rhythms. Lethaia 16:248–248

    Google Scholar 

  • Landman NH, Cochran JK (1987) Growth and longevity of Nautilus. In: Saunders WB, Landman NH (eds) Nautilus: the biology and paleobiology of a living fossil. Plenum, New York

    Google Scholar 

  • Landman NH, Druffel ERM, Cochran JK, Donahue DJ, Jull AJT (1988) Bomb-produced radiocarbon in the shell of the chambered Nautilus—rate of growth and age at maturity. Earth Planet Sc Lett 89:28–34

    Google Scholar 

  • Landman NH, Cochran JK, Chamberlain JA, Hirschberg DJ (1989) Timing of septal formation in 2 species of Nautilus based on radiometric and aquarium data. Mar Biol 102:65–72

    Google Scholar 

  • Landman NH, Cochran JK, Rye DM, Tanabe K, Arnold JM (1994) Early life history of Nautilus: evidence from isotopic analyses of aquarium-reared specimens. Paleobiology 20:40–51

    Google Scholar 

  • Lécuyer C, Bucher H (2006) Stable isotope compositions of a late Jurassic ammonite shell: a record of seasonal surface water temperatures in the southern hemisphere? eEarth 1:1–7

    Google Scholar 

  • Leder JJ, Swart PK, Szmant AM, Dodge RE (1996) The origin of variations in the isotopic record of scleractinian corals: I. Oxygen. Geochim Cosmochim Acta 60:2857–2870

    Google Scholar 

  • Lukeneder A, Harzhauser M, Müllegger S, Piller WE (2010) Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes (δ 18O, δ 13C). Earth Planet Sci Lett 296:103–114

    Google Scholar 

  • Maeda H, Seilacher A (1996) Ammonoid taphonomy. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum, New York

    Google Scholar 

  • Machel H (2000) Application of cathodoluminescence to carbonate diagenesis. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin

    Google Scholar 

  • McConnaughey T (1989) 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim Cosmochim Acta 53:151–162

    Google Scholar 

  • McConnaughey TA, Gillikin DP (2008) Carbon isotopes in mollusk shell carbonates. Geo-Mar Lett 28:287–299

    Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–856

    Google Scholar 

  • McCulloch MT, Gagan MK, Mortimer GE, Chivas AR, Isdale PJ (1994) A high-resolution Sr/Ca and δ 18O coral record from the Great Barrier Reef, Australia, and the 1982–1983 El Niño. Geochim Cosmochim Acta 58:2747–2754

    Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ 15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    Google Scholar 

  • Mitchell SF, Ball JD, Crowley SF, Marshall JD, Paul CRC, Veltkamp CJ, Samir A (1997) Isotope data from Cretaceous chalks and foraminifera: environmental or diagenetic signals? Geology 25:691–694

    Google Scholar 

  • Moriya K (2008) Diagenetic processes for biogenic carbonates; implications for paleotemperature analyses in the geological age. Mon Chikyu 30:329–337

    Google Scholar 

  • Moriya K (2011) Development of the Cretaceous greenhouse climate and the oceanic thermal structure. Paleontol Res 15:77–88

    Google Scholar 

  • Moriya K, Nishi H, Kawahata H, Tanabe K, Takayanagi Y (2003) Demersal habitat of Late Cretaceous ammonoids: evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology 32:167–170

    Google Scholar 

  • Moriya K, Wilson PA, Friedrich O, Erbacher J, Kawahata H (2007) Testing for ice sheets during the mid-Cretaceous greenhouse using glassy foraminiferal calcite from the mid-Cenomanian tropics on Demerara Rise. Geology 35:615–618

    Google Scholar 

  • Mortyn PG, Charles CD (2003) Planktonic foraminiferal depth habitat and δ 18O calibrations: plankton tow results from the Atlantic sector of the Southern Ocean. Paleoceanography. doi:10.1029/2001PA000637

    Google Scholar 

  • Oba T, Kai M, Tanabe K (1992) Early life history and habitat of Nautilus pompilius inferred from oxygen isotope examinations. Mar Biol 113:211–217

    Google Scholar 

  • Ohkouchi N, Tsuda R, Chikaraishi Y, Tanabe K (2012) A preliminary estimate of the trophic position of the deep-water ram’s horn squid Spirula spirula based on the nitrogen isotopic composition of amino acids. Mar Biol 160:773–779

    Google Scholar 

  • Okamoto T (1988a) Changes in life orientation during the ontogeny of some heteromorph ammonoids. Palaeontol 31:281–294

    Google Scholar 

  • Okamoto T (1988b) Develipmental regulation and morphological saltation in the heteromorph ammonite Nipponites. Paleobiology 14:272–286

    Google Scholar 

  • Olóriz F, Rodriguez-Tovar FJ, Marques B, Caracuel JE (1993) Ecostratigraphy and sequence stratigraphy in high frequency sea level fluctuations: Examples from Jurassic macroinvertebrate assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 101:131–145

    Google Scholar 

  • Popp BN, Anderson TF, Sandberg PA (1986) Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geol Soc Am Bull 97:1262–1269

    Google Scholar 

  • Price GD, Passey BH (2013) Dynamic polar climates in a greenhouse world: evidence from clumped isotope thermometry of Early Cretaceous belemnites. Geology 41:923–926

    Google Scholar 

  • Pucéat E, Lécuyer C, Sheppard SMF, Dromart G, Reboulet S, Grandjean P (2003) Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography 18. doi:10.1029/2002PA000823

    Google Scholar 

  • Rexfort A, Mutterlose J (2006) Stable isotope records from Sepia officinalis—a key to understanding the ecology of belemnites? Earth Planet Sci Lett 247:212–221

    Google Scholar 

  • Rohling EJ, Bigg GR (1998) Paleosalinity and δ 18O: a critical assessment. J Geophys Res: Oceans 103:1307–1318

    Google Scholar 

  • Romanek CS, Grossman EL (1989) Stable isotope profiles of Tridacna maxima as environmental indicators. Palaios 4:402–413

    Google Scholar 

  • Romanek CS, Jones DS, Williams DF, Krantz DE, Radtke R (1987) Stable isotopic investigation of physiological and environmental changes recorded in shell carbonate from the giant clam Tridacna maxima. Mar Biol 94:385–393

    Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology: a functional evolutionary approach. Brooks Cole, California

    Google Scholar 

  • Saito T, Donk JV (1974) Oxygen and carbo isotope measurements of Late Cretaceous and Early Tertiary foraminifera. Micropaleontol 20:152–177

    Google Scholar 

  • Saunders WB (1984) The role and status of Nautilus in its natural habitat: evidence from deep-water remote camera photosequences. Paleobiology 10:469–486

    Google Scholar 

  • Saunders WB, Swan RH (1984) Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology 10:195–228

    Google Scholar 

  • Saunders WB, Shapiro EA (1986) Calculation and simulation of ammonoid hydrostatics. Paleobiology 12:64–79

    Google Scholar 

  • Saunders WB, Ward P (2010) Ecology, distribution, and population characteristics of Nautilus. In: Saunders WB, Landman N (eds) Nautilus: biology and paleobiology of a living fossil. Plenum, New York

    Google Scholar 

  • Sayani HR, Cobb KM, Cohen AL, Elliott WC, Nurhati IS, Dunbar RB, Rose KA, Zaunbrecher LK (2011) Effects of diagenesis on paleoclimate reconstructions from modern and young fossil corals. Geochim Cosmochim Acta 75:6361–6373

    Google Scholar 

  • Schauble EA, Ghosh P, Eiler JM (2006) Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochim Cosmochim Acta 70:2510–2529

    Google Scholar 

  • Schöne BR, Oschmann W, Tanabe K, Dettman D, Fiebig J, Houk SD, Kanie Y (2004) Holocene seasonal environmental trends at Tokyo Bay, Japan, reconstructed from bivalve mollusk shells—implications for changes in the East Asian monsoon and latitudinal shifts of the Polar Front. Quat Sci Rev 23:1137–1150

    Google Scholar 

  • Scott G (1940) Paleoecological factors controlling distribution and mode of life of Cretaceous ammonoids in Texas. Journal of Paleontology 14:1164–1203

    Google Scholar 

  • Shackleton NJ, Opdyke ND (1973) Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28–238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary Res 3:39–55

    Google Scholar 

  • Shackleton NJ, Kennett JP (1975) Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotopic analysis in DSDP sites 277, 279 and 281. In: Kennett JP, Houtz RE (eds) Initial reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington D.C.

    Google Scholar 

  • Shigeta Y (1993) Post-hatching early life history of Cretaceous Ammonoidea. Lethaia 26:133–146

    Google Scholar 

  • Signorini SR, McClain CR (2012) Subtropical gyre variability as seen from satellites. Remote Sens Lett 3:471–479

    Google Scholar 

  • Spero HJ, Lea DW (1996) Experimental determination of stable isotope variability in Globigerina bullides: Implications fro paleoceanographic reconstructions. Mar Micropaleontol 28:231–246

    Google Scholar 

  • Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–500

    Google Scholar 

  • Stahl W, Jordan R (1969) General considerations on isotopic paleotenperature deternimations and analyses of Jurassic ammonites. Earth Planet Sci Lett 6:173–178

    Google Scholar 

  • Suzuki A, Yukino I, Kawahata H (1999) Temperature-skeletal δ 18O relationship of Porites australiensis from Ishigaki Island, the Ryukyus, Japan. Geochem J 33:419–428

    Google Scholar 

  • Suzuki A, Gagan MK, De Deckker P, Omura A, Yukino I, Kawahata H (2001) Last Interglacial coral record of enhanced insolation seasonality and seawater 18O enrichment in the Ryukyu Islands, northwest Pacific. Geophys Res Lett 28:3685–3688

    Google Scholar 

  • Tanabe K, Mapes RH, Sasaki T, Landman NH (2000) Soft-part anatomy of the siphuncle in Permian prolecanitid ammonoids. Lethaia 33:83–91

    Google Scholar 

  • Tanaka N, Monaghan MC, Rye DM (1986) Contribution of metabolic carbon to mollusc and barnacle shell carbonate. Nature 320:520–523

    Google Scholar 

  • Taylor BE, Ward PD (1983) Stable isotope studies of Nautilus macromphalus Sowerby (New Caledonia) and Nautilus pompilius L. (Fiji). Palaeogeogr Palaeoclimatol Palaeoecol 41:1–16

    Google Scholar 

  • Tripati AK, Eagle RA, Thiagarajan N, Gagnon AC, Bauch H, Halloran PR, Eiler JM (2010) 13C–18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths. Geochim Cosmochim Acta 74:5697–5717

    Google Scholar 

  • Trueman AE (1941) The ammonite body-chamber, with special reference to the buoyancy and mode of life of the living ammonite. Quart J Geol Soc Lond 96:339–383

    Google Scholar 

  • Tsujita CJ, Westermann GEG (1998) Ammonoid habitats and habits in the Western Interior Seaway: A case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 144:135–160

    Google Scholar 

  • Tsukamoto K, Arai T (2001) Facultative catadromy of the eel Anguilla japonica between freshwater and seawater habitats. Mar Ecol Prog Ser 220:265–276

    Google Scholar 

  • Tsukamoto K, Nakai I, Tesch WV (1998) Do all freshwater eels migrate? Nature 396:635–636

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Science, Oxford

    Google Scholar 

  • Ufnar DF, Ludvigson GA, González LA, Brenner RL, Witzke BJ (2004) High latitude meteoric δ 18O compositions: paleosol siderite in the Middle Cretaceous Nanushuk Formation, North Slope, Alaska. Geol Soc Am Bull 116:463

    Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 1947:562–581

    Google Scholar 

  • Urey HC, Lowenstam HA, Epstein S, Mckinney CR (1951) Measurements of paleotemperatures and temperatures of the Upper Cretaceous of England, Demmark, and southeastern Unites States. Geol Soc Am Bull 62:399–416

    Google Scholar 

  • Veizer J (1983) Trace elements and isotopes in sedimentary carbonates. In: Reeder RJ (ed) Carbonates: mineralogy and chemistry. Mineralogical Society of America, Michigan

    Google Scholar 

  • Veizer J (1992) Depositional and diagenetic history of limestones: stable and radiogenic isotopes. In: Clauer N, Chaudhuri S (eds) Isotopic signatures and sedimentary records. Springer-Verlag, Berlin

    Google Scholar 

  • Wacker U, Fiebig J, Schoene BR (2013) Clumped isotope analysis of carbonates: comparison of two different acid digestion techniques. Rapid Commun Mass Spectrom 27:1631–1642

    Google Scholar 

  • Wang Z, Schauble EA, Eiler JM (2004) Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. Geochim Cosmochim Acta 68:4779–4797

    Google Scholar 

  • Ward PD, Carlson B, Weekly M, Brumbaugh B (1984) Remote telemetry of daily vertical and horizontal movement of Nautilus in Palau. Nature 309:248–250

    Google Scholar 

  • Watanabe T, Oba T (1999) Daily reconstruction of water temperature from oxygen isotopic ratios of a modern Tridacna shell using a freezing microtome sampling technique. J Geophys Res 104:20667–20674

    Google Scholar 

  • Watanabe T, Gagan MK, Corrége T, Scott-Gagan H, Cowley J, Hantoro WS (2003) Oxygen isotope systematics in Diploastrea heliopora: new coral archive of tropical paleoclimate. Geochim Cosmochim Acta 67:1349–1358

    Google Scholar 

  • Watanabe T, Suzuki A, Minobe S, Kawahima T, Kameo K, Minoshima K, Aguilar YM, Wani R, Kawahata H, Sowa K, Nagai T, Kase T (2011) Permanent El Niño during the Pliocene warm period not supported by coral evidence. Nature 471:209–211

    Google Scholar 

  • Weber JN, Raup DM (1966) Fractionation of the stable isotopes of carbon and oxygen in marine calcareous organisms-the Echinoidea. Part II. Environmental and genetic factors. Geochim Cosmochim Acta 30:705–736

    Google Scholar 

  • Wefer G (1985) Die Verteilung stabiler Isotope in Kalkschalen mariner Organismen. Geologisches Jahrb, Reihe A 82:3–111

    Google Scholar 

  • Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100:207–248

    Google Scholar 

  • Wells JW (1963) Coral growth and geochronometry. Nature 197:948–950

    Google Scholar 

  • Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released. EOS Transac Am Geophys Union 94:409–410

    Google Scholar 

  • Westermann GEG (1971) Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Life Sci Contrib R Ont Mus 78:1–39

    Google Scholar 

  • Westermann GEG (1989) New developments in ecology of Jurassic-Cretaceous ammonoids. In: Pallini G, Cecca F, Cresta S (eds) Fossili, evoluzione, ambiente, Att II Conventione Internationale Pergola 1987. Tecnostampa, Otra Vetere, Italy

    Google Scholar 

  • Westermann GEG (1996) Ammonoid life and habitat. In: Landman N, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • White RMP, Dennis PF, Atkinson TC (1999) Experimental calibration and field investigation of the oxygen isotopic fractionation between biogenic aragonite and water. Rapid Commun Mass Spectrom 13:1242–1247

    Google Scholar 

  • Williams DF, Rötter R, Schmaljohann R, Keigwin L (1981) Oxygen and carbon isotopic fractionation and algal symbiosis in the benthic foraminifera Heterostegina depressa. Palaeogeogr Palaeoclimatol Palaeoecol 33:231–251

    Google Scholar 

  • Zachos JC, Stott LD, Lohmann KC (1994) Evolution of early Cenozoic marine temperatures. Paleoceanogr 9:353–387

    Google Scholar 

  • Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and abrrations in global climate 65 Ma to present. Science 292:686–693

    Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283

    Google Scholar 

  • Zanden MJV, Rasmussen JB (2001) Variation in δ 15N and δ 13C trophic fractionation: Implications for aquatic food web studies. Limnol Oceanogr 46:2061–2062-2066

    Google Scholar 

  • Zakharov YD, Shigeta Y, Smyshlyaeva OP, Popov AM, Ignatiev AV (2006) Relationship between delta C-13 and delta O-19 values of the recent Nautilus and brachiopod shells in the wild and the problem of reconstruction of fossil cephalopod habitat. Geosci J 10:331–345

    Google Scholar 

  • Zaarur S, Affek HP, Brandon MT (2013) A revised calibration of the clumped isotope thermometer. Earth Planet Sc Lett 382:47–57

    Google Scholar 

  • Zeebe RE (1999) An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes. Geochim Cosmochim Acta 63:2001–2007

    Google Scholar 

  • Zeebe RE (2001) Seawater pH and isotopic paleotemperatures of Cretaceous oceans. Palaeogeogr Palaeoclimatol Palaeoecol 170:49–57

    Google Scholar 

  • Zhou J, Poulsen CJ, Pollard D, White TS (2008) Simulation of modern and middle Cretaceous marine δ 18O with an ocean-atmosphere general circulation model. Paleoceanography. doi:10.1029/2008PA001596

    Google Scholar 

Download references

Acknowledgement

I would like to express the deepest appreciation to Prof. Hiromichi Hirano of Waseda University and Prof. Kazushige Tanabe of the University of Tokyo for their continuous encouragement and guidance. Without their help, this paper would not have been possible. I acknowledge Prof. J. Kirk Cochran and Benjamin Linzmeier for critical reading of the manuscript and for useful discussion. I also thank Profs. Hodaka Kawahata, and Kazuyoshi Endo of the University of Tokyo, Prof. Tatsuo Oji of Nagoya University, Prof. Hiroshi Nishi of Tohoku University, and Dr. Neil Landman of American Museum of Natural History for their fruitful discussion. Dr. Toyoho Ishimura of Ibaraki National College of Technology kindly provided some comments on oxygen isotopic thermometry. All figures except for Fig. 19.4, 19.6 and 19.7 were generated with Generic Mapping Tools (Wessel et al. 2013). Statistic analyses were made with R (Ihanka and Gentleman 1996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Moriya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moriya, K. (2015). Isotope Signature of Ammonoid Shells. In: Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. (eds) Ammonoid Paleobiology: From anatomy to ecology. Topics in Geobiology, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9630-9_19

Download citation

Publish with us

Policies and ethics