Skip to main content

Protein-Protein Interactions: Structures and Druggability

  • Conference paper
  • First Online:
Multifaceted Roles of Crystallography in Modern Drug Discovery

Abstract

While protein-protein interfaces have promised a range of benefits over conventional sites in drug discovery, they present unique challenges. Here we describe recent developments that facilitate many aspects of the drug discovery process – including characterization and classification of interfaces, identifying druggable sites and strategies for inhibitor development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lipinski CA, Lombardo F, Dominy BW et al (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    CAS  PubMed  Google Scholar 

  2. Blundell T, Sibanda BL, Pearl L (1983) Three-dimensional structure, specificity and catalytic mechanism of renin. Nature 304:273–275

    CAS  PubMed  Google Scholar 

  3. Foundling SI, Cooper J, Watson FE et al (1987) High resolution X-ray analyses of renin inhibitor-aspartic proteinase complexes. Nature 327:349–352

    CAS  PubMed  Google Scholar 

  4. Lapatto R, Blundell T, Hemmings A et al (1989) X-ray analysis of HIV-1 proteinase at 2.7 A resolution confirms structural homology among retroviral enzymes. Nature 342:299–302

    CAS  PubMed  Google Scholar 

  5. Dhanaraj V, Dealwis CG, Frazao C et al (1992) X-ray analyses of peptide-inhibitor complexes define the structural basis of specificity for human and mouse renins. Nature 357:466–472

    CAS  PubMed  Google Scholar 

  6. Albiston AL, Morton CJ, Ng HL et al (2008) Identification and characterization of a new cognitive enhancer based on inhibition of insulin-regulated aminopeptidase. FASEB J 22:4209–4217

    CAS  PubMed  Google Scholar 

  7. Ascher DB, Polekhina G, Parker MW (2012) Crystallization and preliminary X-ray diffraction analysis of human endoplasmic reticulum aminopeptidase 2. Acta Crystallogr Sect F: Struct Biol Cryst Commun 68:468–471

    CAS  Google Scholar 

  8. Chai SY, Yeatman HR, Parker MW et al (2008) Development of cognitive enhancers based on inhibition of insulin-regulated aminopeptidase. BMC Neurosci 9(Suppl 2):S14

    PubMed Central  PubMed  Google Scholar 

  9. Ye S, Chai SY, Lew RA et al (2008) Identification of modulating residues defining the catalytic cleft of insulin-regulated aminopeptidase. Biochem Cell Biol 86:251–261

    CAS  PubMed  Google Scholar 

  10. Parker LJ, Ascher DB, Gao C et al (2012) Structural approaches to probing metal interaction with proteins. J Inorg Biochem 115:138–147

    CAS  PubMed  Google Scholar 

  11. Parker LJ, Italiano LC, Morton CJ et al (2011) Studies of glutathione transferase P1-1 bound to a platinum(IV)-based anticancer compound reveal the molecular basis of its activation. Chemistry 17:7806–7816

    CAS  PubMed  Google Scholar 

  12. Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39

    PubMed  Google Scholar 

  13. Congreve M, Carr R, Murray C et al (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8:876–877

    PubMed  Google Scholar 

  14. Erlanson DA, Braisted AC, Raphael DR et al (2000) Site-directed ligand discovery. Proc Natl Acad Sci U S A 97:9367–9372

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Blundell TL, Jhoti H, Abell C (2002) High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 1:45–54

    CAS  PubMed  Google Scholar 

  16. Congreve M, Murray CW, Blundell TL (2005) Structural biology and drug discovery. Drug Discov Today 10:895–907

    CAS  PubMed  Google Scholar 

  17. Lepre CA, Moore JM, Peng JW (2004) Theory and applications of NMR-based screening in pharmaceutical research. Chem Rev 104:3641–3676

    CAS  PubMed  Google Scholar 

  18. Murray CW, Blundell TL (2010) Structural biology in fragment-based drug design. Curr Opin Struct Biol 20:497–507

    CAS  PubMed  Google Scholar 

  19. Cala O, Guilliere F, Krimm I (2014) NMR-based analysis of protein-ligand interactions. Anal Bioanal Chem 406:943–956

    CAS  PubMed  Google Scholar 

  20. Hartshorn MJ, Murray CW, Cleasby A et al (2005) Fragment-based lead discovery using X-ray crystallography. J Med Chem 48:403–413

    CAS  PubMed  Google Scholar 

  21. Caliandro R, Belviso DB, Aresta BM et al (2013) Protein crystallography and fragment-based drug design. Future Med Chem 5:1121–1140

    CAS  PubMed  Google Scholar 

  22. Navratilova I, Hopkins AL (2010) Fragment screening by surface plasmon resonance. ACS Med Chem Lett 1:44–48

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Navratilova I, Hopkins AL (2011) Emerging role of surface plasmon resonance in fragment-based drug discovery. Future Med Chem 3:1809–1820

    CAS  PubMed  Google Scholar 

  24. Shepherd CA, Hopkins AL, Navratilova I (2014) Fragment screening by SPR and advanced application to GPCRs. Biol Prog Biophys Mol 116:113–123

    CAS  Google Scholar 

  25. Pantoliano MW, Petrella EC, Kwasnoski JD et al (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen 6:429–440

    CAS  PubMed  Google Scholar 

  26. Lo MC, Aulabaugh A, Jin G et al (2004) Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 332:153–159

    CAS  PubMed  Google Scholar 

  27. Kranz JK, Schalk-Hihi C (2011) Protein thermal shifts to identify low molecular weight fragments. Methods Enzymol 493:277–298

    CAS  PubMed  Google Scholar 

  28. Leavitt S, Freire E (2001) Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr Opin Struct Biol 11:560–566

    CAS  PubMed  Google Scholar 

  29. Gozalbes R, Carbajo RJ, Pineda-Lucena A (2010) Contributions of computational chemistry and biophysical techniques to fragment-based drug discovery. Curr Med Chem 17:1769–1794

    CAS  PubMed  Google Scholar 

  30. Ladbury JE, Klebe G, Freire E (2010) Adding calorimetric data to decision making in lead discovery: a hot tip. Nat Rev Drug Discov 9:23–27

    CAS  PubMed  Google Scholar 

  31. Valkov E, Sharpe T, Marsh M et al (2012) Targeting protein-protein interactions and fragment-based drug discovery. Top Curr Chem 317:145–179

    CAS  PubMed  Google Scholar 

  32. Whittle PJ, Blundell TL (1994) Protein structure–based drug design. Annu Rev Biophys Biomol Struct 23:349–375

    CAS  PubMed  Google Scholar 

  33. Surade S, Blundell TL (2012) Structural biology and drug discovery of difficult targets: the limits of ligandability. Chem Biol 19:42–50

    CAS  PubMed  Google Scholar 

  34. Blundell TL, Srinivasan N (1996) Symmetry, stability, and dynamics of multidomain and multicomponent protein systems. Proc Natl Acad Sci U S A 93:14243–14248

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Pellegrini L, Burke DF, von Delft F et al (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407:1029–1034

    CAS  PubMed  Google Scholar 

  36. Harmer NJ, Ilag LL, Mulloy B et al (2004) Towards a resolution of the stoichiometry of the fibroblast growth factor (FGF)-FGF receptor-heparin complex. J Mol Biol 339:821–834

    CAS  PubMed  Google Scholar 

  37. Robinson CJ, Harmer NJ, Goodger SJ et al (2005) Cooperative dimerization of fibroblast growth factor 1 (FGF1) upon a single heparin saccharide may drive the formation of 2:2:1 FGF1.FGFR2c.heparin ternary complexes. J Biol Chem 280:42274–42282

    CAS  PubMed  Google Scholar 

  38. Brown A, Robinson CJ, Gallagher JT et al (2013) Cooperative heparin-mediated oligomerization of fibroblast growth factor-1 (FGF1) precedes recruitment of FGFR2 to ternary complexes. Biophys J 104:1720–1730

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Chirgadze DY, Hepple JP, Zhou H et al (1999) Crystal structure of the NK1 fragment of HGF/SF suggests a novel mode for growth factor dimerization and receptor binding. Nat Struct Biol 6:72–79

    CAS  PubMed  Google Scholar 

  40. Gherardi E, Youles ME, Miguel RN et al (2003) Functional map and domain structure of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor. Proc Natl Acad Sci U S A 100:12039–12044

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Gherardi E, Sandin S, Petoukhov MV et al (2006) Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc Natl Acad Sci U S A 103:4046–4051

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Higueruelo AP, Jubb H, Blundell TL (2013) Protein-protein interactions as druggable targets: recent technological advances. Curr Opin Pharmacol 13:791–796

    CAS  PubMed  Google Scholar 

  43. Herbert C, Schieborr U, Saxena K et al (2013) Molecular mechanism of SSR128129E, an extracellularly acting, small-molecule, allosteric inhibitor of FGF receptor signaling. Cancer Cell 23:489–501

    CAS  PubMed  Google Scholar 

  44. Bolanos-Garcia VM, Wu Q, Ochi T et al (2012) Spatial and temporal organization of multi-protein assemblies: achieving sensitive control in information-rich cell-regulatory systems. Philos Transact A Math Phys Eng Sci 370:3023–3039

    CAS  Google Scholar 

  45. Sibanda BL, Critchlow SE, Begun J et al (2001) Crystal structure of an Xrcc4-DNA ligase IV complex. Nat Struct Biol 8:1015–1019

    CAS  PubMed  Google Scholar 

  46. Sibanda BL, Chirgadze DY, Blundell TL (2010) Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. Nature 463:118–121

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Singleton BK, Torres-Arzayus MI, Rottinghaus ST et al (1999) The C terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit. Mol Cell Biol 19:3267–3277

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Gell D, Jackson SP (1999) Mapping of protein-protein interactions within the DNA-dependent protein kinase complex. Nucleic Acids Res 27:3494–3502

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Nick McElhinny SA, Snowden CM, McCarville J et al (2000) Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol Cell Biol 20:2996–3003

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Yano K, Morotomi-Yano K, Wang SY et al (2008) Ku recruits XLF to DNA double-strand breaks. EMBO Rep 9:91–96

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Sasaki K, Dockerill S, Adamiak DA et al (1975) X-ray analysis of glucagon and its relationship to receptor binding. Nature 257:751–757

    CAS  PubMed  Google Scholar 

  52. Pellegrini L, Yu DS, Lo T et al (2002) Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420:287–293

    CAS  PubMed  Google Scholar 

  53. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12:54–60

    CAS  PubMed  Google Scholar 

  54. Hernandez H, Robinson CV (2007) Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protoc 2:715–726

    CAS  PubMed  Google Scholar 

  55. Sharon M, Robinson CV (2007) The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu Rev Biochem 76:167–193

    CAS  PubMed  Google Scholar 

  56. Ascher DB, Cromer BA, Morton CJ et al (2011) Regulation of insulin-regulated membrane aminopeptidase activity by its C-terminal domain. Biochemistry 50:2611–2622

    CAS  PubMed  Google Scholar 

  57. Ascher DB, Wielens J, Nero TL et al (2014) Potent hepatitis C inhibitors bind directly to NS5A and reduce its affinity for RNA. Sci Rep 4:4765

    PubMed Central  PubMed  Google Scholar 

  58. Polekhina G, Ascher DB, Kok SF et al (2013) Structure of the N-terminal domain of human thioredoxin-interacting protein. Acta Crystallogr D Biol Crystallogr 69:333–344

    CAS  PubMed  Google Scholar 

  59. Rambo RP, Tainer JA (2013) Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496:477–481

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Koch MH, Vachette P, Svergun DI (2003) Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q Rev Biophys 36:147–227

    CAS  PubMed  Google Scholar 

  61. Putnam CD, Hammel M, Hura GL et al (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285

    CAS  PubMed  Google Scholar 

  62. Hammel M, Yu Y, Fang S et al (2010) XLF regulates filament architecture of the XRCC4.ligase IV complex. Structure 18:1431–1442

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Wong W, Bai XC, Brown A et al (2014) Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. Elife 3:e03080

    PubMed Central  Google Scholar 

  64. Davis AJ, Chen BP, Chen DJ (2014) DNA-PK: a dynamic enzyme in a versatile DSB repair pathway. DNA Repair (Amst) 17:21–29

    CAS  Google Scholar 

  65. Yang H, Rudge DG, Koos JD et al (2013) mTOR kinase structure, mechanism and regulation. Nature 497:217–223

    CAS  PubMed  Google Scholar 

  66. Boskovic J, Rivera-Calzada A, Maman JD et al (2003) Visualization of DNA-induced conformational changes in the DNA repair kinase DNA-PKcs. EMBO J 22:5875–5882

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Chiu CY, Cary RB, Chen DJ et al (1998) Cryo-EM imaging of the catalytic subunit of the DNA-dependent protein kinase. J Mol Biol 284:1075–1081

    CAS  PubMed  Google Scholar 

  68. Leuther KK, Hammarsten O, Kornberg RD et al (1999) Structure of DNA-dependent protein kinase: implications for its regulation by DNA. EMBO J 18:1114–1123

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Williams DR, Lee KJ, Shi J et al (2008) Cryo-EM structure of the DNA-dependent protein kinase catalytic subunit at subnanometer resolution reveals alpha helices and insight into DNA binding. Structure 16:468–477

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Hammel M, Yu Y, Mahaney BL et al (2010) Ku and DNA-dependent protein kinase dynamic conformations and assembly regulate DNA binding and the initial non-homologous end joining complex. J Biol Chem 285:1414–1423

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Morris EP, Rivera-Calzada A, da Fonseca PC et al (2011) Evidence for a remodelling of DNA-PK upon autophosphorylation from electron microscopy studies. Nucleic Acids Res 39:5757–5767

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Spagnolo L, Rivera-Calzada A, Pearl LH et al (2006) Three-dimensional structure of the human DNA-PKcs/Ku70/Ku80 complex assembled on DNA and its implications for DNA DSB repair. Mol Cell 22:511–519

    CAS  PubMed  Google Scholar 

  73. Cary RB, Peterson SR, Wang J et al (1997) DNA looping by Ku and the DNA-dependent protein kinase. Proc Natl Acad Sci U S A 94:4267–4272

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Yaneva M, Kowalewski T, Lieber MR (1997) Interaction of DNA-dependent protein kinase with DNA and with Ku: biochemical and atomic-force microscopy studies. EMBO J 16:5098–5112

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Ochi T, Wu Q, Blundell TL (2014) The spatial organization of non-homologous end joining: from bridging to end joining. DNA Repair (Amst) 17:98–109

    CAS  Google Scholar 

  76. Andres SN, Vergnes A, Ristic D et al (2012) A human XRCC4-XLF complex bridges DNA. Nucleic Acids Res 40:1868–1878

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Hammel M, Rey M, Yu Y et al (2011) XRCC4 protein interactions with XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. J Biol Chem 286:32638–32650

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Ropars V, Drevet P, Legrand P et al (2011) Structural characterization of filaments formed by human Xrcc4-Cernunnos/XLF complex involved in nonhomologous DNA end-joining. Proc Natl Acad Sci U S A 108:12663–12668

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Wu Q, Ochi T, Matak-Vinkovic D et al (2011) Non-homologous end-joining partners in a helical dance: structural studies of XLF-XRCC4 interactions. Biochem Soc Trans 39:1387–1392, suppl 2 p following 1392

    CAS  PubMed  Google Scholar 

  80. Ochi T, Wu Q, Chirgadze DY et al (2012) Structural insights into the role of domain flexibility in human DNA ligase IV. Structure 20:1212–1222

    CAS  PubMed  Google Scholar 

  81. Williams GJ, Hammel M, Radhakrishnan SK et al (2014) Structural insights into NHEJ: building up an integrated picture of the dynamic DSB repair super complex, one component and interaction at a time. DNA Repair (Amst) 17:110–120

    CAS  Google Scholar 

  82. Critchlow SE, Bowater RP, Jackson SP (1997) Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol 7:588–598

    CAS  PubMed  Google Scholar 

  83. Grawunder U, Zimmer D, Lieber MR (1998) DNA ligase IV binds to XRCC4 via a motif located between rather than within its BRCT domains. Curr Biol 8:873–876

    CAS  PubMed  Google Scholar 

  84. Recuero-Checa MA, Dore AS, Arias-Palomo E et al (2009) Electron microscopy of Xrcc4 and the DNA ligase IV-Xrcc4 DNA repair complex. DNA Repair (Amst) 8:1380–1389

    CAS  Google Scholar 

  85. Ochi T, Gu X, Blundell TL (2013) Structure of the catalytic region of DNA ligase IV in complex with an Artemis fragment sheds light on double-strand break repair. Structure 21:672–679

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Dou Y, Baisnee PF, Pollastri G et al (2004) ICBS: a database of interactions between protein chains mediated by beta-sheet formation. Bioinformatics 20:2767–2777

    CAS  PubMed  Google Scholar 

  88. Lo A, Cheng CW, Chiu YY et al (2011) TMPad: an integrated structural database for helix-packing folds in transmembrane proteins. Nucleic Acids Res 39:D347–D355

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Mosca R, Ceol A, Stein A et al (2014) 3did: a catalog of domain-based interactions of known three-dimensional structure. Nucleic Acids Res 42:D374–D379

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Huang Z, Zhu L, Cao Y et al (2011) ASD: a comprehensive database of allosteric proteins and modulators. Nucleic Acids Res 39:D663–D669

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Huang Z, Mou L, Shen Q et al (2014) ASD v2.0: updated content and novel features focusing on allosteric regulation. Nucleic Acids Res 42:D510–D516

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Bickerton GR, Higueruelo AP, Blundell TL (2011) Comprehensive, atomic-level characterization of structurally characterized protein-protein interactions: the PICCOLO database. BMC Bioinf 12:313

    Google Scholar 

  93. Lee S, Blundell TL (2009) BIPA: a database for protein-nucleic acid interaction in 3D structures. Bioinformatics 25:1559–1560

    CAS  PubMed  Google Scholar 

  94. Schreyer A, Blundell T (2009) CREDO: a protein-ligand interaction database for drug discovery. Chem Biol Drug Des 73:157–167

    CAS  PubMed  Google Scholar 

  95. Schreyer AM, Blundell TL (2013) CREDO: a structural interactomics database for drug discovery. Database (Oxford) 2013:bat049

    Google Scholar 

  96. Hamosh A, Scott AF, Amberger JS et al (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Forbes SA, Bhamra G, Bamford S et al (2008) The catalogue of somatic mutations in cancer (COSMIC). Curr Protoc Hum Genet, Chapter 10:Unit 10 11

    Google Scholar 

  98. Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32:D115–D119

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Hubbard T, Barker D, Birney E et al (2002) The Ensembl genome database project. Nucleic Acids Res 30:38–41

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Gaulton A, Bellis LJ, Bento AP et al (2011) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107

    PubMed Central  PubMed  Google Scholar 

  101. Lewell XQ, Judd DB, Watson SP et al (1998) RECAP-Retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J Chem Inf Comput Sci 38:511–522

    CAS  PubMed  Google Scholar 

  102. Deng Z, Chuaqui C, Singh J (2004) Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. J Med Chem 47:337–344

    CAS  PubMed  Google Scholar 

  103. Blundell TL, Sibanda BL, Montalvao RW et al (2006) Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery. Philos Trans R Soc Lond B Biol Sci 361:413–423

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Nair SK, Burley SK (2003) X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112:193–205

    CAS  PubMed  Google Scholar 

  105. Fletcher S, Hamilton AD (2006) Targeting protein-protein interactions by rational design: mimicry of protein surfaces. J R Soc Interface 3:215–233

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci U S A 93:13–20

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Arkin MR, Tang Y, Wells JA (2014) Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol 21:1102–1114

    CAS  PubMed  Google Scholar 

  108. Cooper A (1999) Thermodynamic analysis of biomolecular interactions. Curr Opin Chem Biol 3:557–563

    CAS  PubMed  Google Scholar 

  109. Breiten B, Lockett MR, Sherman W et al (2013) Water networks contribute to enthalpy/entropy compensation in protein-ligand binding. J Am Chem Soc 135:15579–15584

    CAS  PubMed  Google Scholar 

  110. Fuller JC, Burgoyne NJ, Jackson RM (2009) Predicting druggable binding sites at the protein-protein interface. Drug Discov Today 14:155–161

    CAS  PubMed  Google Scholar 

  111. Li X, Keskin O, Ma B et al (2004) Protein-protein interactions: hot spots and structurally conserved residues often locate in complemented pockets that pre-organized in the unbound states: implications for docking. J Mol Biol 344:781–795

    CAS  PubMed  Google Scholar 

  112. Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267:383–386

    CAS  PubMed  Google Scholar 

  113. Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280:1–9

    CAS  PubMed  Google Scholar 

  114. Rajamani D, Thiel S, Vajda S et al (2004) Anchor residues in protein-protein interactions. Proc Natl Acad Sci U S A 101:11287–11292

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Ben-Shimon A, Eisenstein M (2010) Computational mapping of anchoring spots on protein surfaces. J Mol Biol 402:259–277

    CAS  PubMed  Google Scholar 

  116. Meireles LM, Domling AS, Camacho CJ (2010) ANCHOR: a web server and database for analysis of protein-protein interaction binding pockets for drug discovery. Nucleic Acids Res 38:W407–W411

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Koes DR, Camacho CJ (2012) PocketQuery: protein-protein interaction inhibitor starting points from protein-protein interaction structure. Nucleic Acids Res 40:W387–W392

    PubMed Central  CAS  PubMed  Google Scholar 

  118. London N, Movshovitz-Attias D, Schueler-Furman O (2010) The structural basis of peptide-protein binding strategies. Structure 18:188–199

    CAS  PubMed  Google Scholar 

  119. London N, Raveh B, Movshovitz-Attias D et al (2010) Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? Proteins 78:3140–3149

    PubMed Central  CAS  PubMed  Google Scholar 

  120. London N, Raveh B, Schueler-Furman O (2013) Druggable protein-protein interactions–from hot spots to hot segments. Curr Opin Chem Biol 17:952–959

    CAS  PubMed  Google Scholar 

  121. Pommier Y, Marchand C (2012) Interfacial inhibitors: targeting macromolecular complexes. Nat Rev Drug Discov 11:25–36

    CAS  Google Scholar 

  122. Gao M, Skolnick J (2012) The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation. Proc Natl Acad Sci U S A 109:3784–3789

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Topham CM, Srinivasan N, Blundell TL (1997) Prediction of the stability of protein mutants based on structural environment-dependent amino acid substitution and propensity tables. Protein Eng 10:7–21

    CAS  PubMed  Google Scholar 

  124. Worth CL, Preissner R, Blundell TL (2011) SDM–a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res 39:W215–W222

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Overington J, Donnelly D, Johnson MS et al (1992) Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds. Protein Sci 1:216–226

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Kucukkal TG, Yang Y, Chapman SC et al (2014) Computational and experimental approaches to reveal the effects of single nucleotide polymorphisms with respect to disease diagnostics. Int J Mol Sci 15:9670–9717

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Pires DE, Ascher DB, Blundell TL (2014) mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 30:335–342

    PubMed Central  CAS  PubMed  Google Scholar 

  128. da Silveira CH, Pires DE, Minardi RC et al (2009) Protein cutoff scanning: a comparative analysis of cutoff dependent and cutoff free methods for prospecting contacts in proteins. Proteins 74:727–743

    PubMed  Google Scholar 

  129. Pires DE, de Melo-Minardi RC, Ados Santos M et al (2011) Cutoff Scanning Matrix (CSM): structural classification and function prediction by protein inter-residue distance patterns. BMC Genomics 12(Suppl 4):S12

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Pires DE, de Melo-Minardi RC, da Silveira CH et al (2013) aCSM: noise-free graph-based signatures to large-scale receptor-based ligand prediction. Bioinformatics 29:855–861

    CAS  PubMed  Google Scholar 

  131. Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320:369–387

    CAS  PubMed  Google Scholar 

  132. Kortemme T, Baker D (2002) A simple physical model for binding energy hot spots in protein-protein complexes. Proc Natl Acad Sci U S A 99:14116–14121

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Kortemme T, Kim DE, Baker D (2004) Computational alanine scanning of protein-protein interfaces. Sci STKE 2004:pl2

    Google Scholar 

  134. Huo S, Massova I, Kollman PA (2002) Computational alanine scanning of the 1:1 human growth hormone-receptor complex. J Comput Chem 23:15–27

    CAS  PubMed  Google Scholar 

  135. Gouda H, Kuntz ID, Case DA et al (2003) Free energy calculations for theophylline binding to an RNA aptamer: comparison of MM-PBSA and thermodynamic integration methods. Biopolymers 68:16–34

    CAS  PubMed  Google Scholar 

  136. Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    CAS  PubMed  Google Scholar 

  137. Kollman P (1993) Free energy calculations: applications to chemical and biochemical phenomena. Chem Rev 93:2395–2417

    CAS  Google Scholar 

  138. Kong X, Brooks C (1996) Lambda-dynamics: a new approach to free energy calculations. J Chem Phys 105:2414–2423

    Google Scholar 

  139. Moreira I, Fernandes P, Ramos M (2007) Unravelling Hot Spots: a comprehensive computational mutagenesis study. Theor Chem Accounts 117:99–113

    CAS  Google Scholar 

  140. Moreira IS, Fernandes PA, Ramos MJ (2005) Accuracy of the numerical solution of the Poisson–Boltzmann equation. J Mol Struct THEOCHEM 729:11–18

    CAS  Google Scholar 

  141. Massova I, Kollman PA (1999) Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 121: 8133–8143

    CAS  Google Scholar 

  142. Moal IH, Fernandez-Recio J (2012) SKEMPI: a structural kinetic and energetic database of mutant protein interactions and its use in empirical models. Bioinformatics 28:2600–2607

    CAS  PubMed  Google Scholar 

  143. Dehouck Y, Kwasigroch JM, Rooman M et al (2013) BeAtMuSiC: prediction of changes in protein-protein binding affinity on mutations. Nucleic Acids Res 41:W333–W339

    PubMed Central  PubMed  Google Scholar 

  144. Dourado DF, Flores SC (2014) A multiscale approach to predicting affinity changes in protein-protein interfaces. Proteins 82:2681–2690

    CAS  PubMed  Google Scholar 

  145. Li M, Petukh M, Alexov E et al (2014) Predicting the impact of missense mutations on protein-protein binding affinity. J Chem Theory Comput 10:1770–1780

    CAS  PubMed  Google Scholar 

  146. Moal IH, Fernandez-Recio J (2013) Intermolecular contact potentials for protein–protein interactions extracted from binding free energy changes upon mutation. J Chem Theory Comput 9:3715–3727

    CAS  Google Scholar 

  147. Gossage L, Pires DE, Olivera-Nappa A et al (2014) An integrated computational approach can classify VHL missense mutations according to risk of clear cell renal carcinoma. Hum Mol Genet 23:5976–5988

    PubMed Central  PubMed  Google Scholar 

  148. Pires DE, Ascher DB, Blundell TL (2014) DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 42:W314–W319

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Fletcher S, Hamilton AD (2005) Protein surface recognition and proteomimetics: mimics of protein surface structure and function. Curr Opin Chem Biol 9:632–638

    CAS  PubMed  Google Scholar 

  150. Wilson AJ (2009) Inhibition of protein-protein interactions using designed molecules. Chem Soc Rev 38:3289–3300

    CAS  PubMed  Google Scholar 

  151. Buerger C, Groner B (2003) Bifunctional recombinant proteins in cancer therapy: cell penetrating peptide aptamers as inhibitors of growth factor signaling. J Cancer Res Clin Oncol 129:669–675

    CAS  PubMed  Google Scholar 

  152. Seidah NG (2013) Proprotein convertase subtilisin kexin 9 (PCSK9) inhibitors in the treatment of hypercholesterolemia and other pathologies. Curr Pharm Des 19:3161–3172

    CAS  PubMed  Google Scholar 

  153. Traczewski P, Rudnicka L (2011) Treatment of systemic lupus erythematosus with epratuzumab. Br J Clin Pharmacol 71:175–182

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Nord K, Gunneriusson E, Ringdahl J et al (1997) Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol 15:772–777

    CAS  PubMed  Google Scholar 

  155. Kaminskas LM, Ascher DB, McLeod VM et al (2013) PEGylation of interferon alpha2 improves lymphatic exposure after subcutaneous and intravenous administration and improves antitumour efficacy against lymphatic breast cancer metastases. J Control Release 168:200–208

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Basse MJ, Betzi S, Bourgeas R et al (2013) 2P2Idb: a structural database dedicated to orthosteric modulation of protein-protein interactions. Nucleic Acids Res 41:D824–D827

    PubMed Central  CAS  PubMed  Google Scholar 

  157. Higueruelo AP, Jubb H, Blundell TL (2013) TIMBAL v2: update of a database holding small molecules modulating protein-protein interactions. Database (Oxford) 2013:bat039

    Google Scholar 

  158. Higueruelo AP, Schreyer A, Bickerton GRJ et al (2009) Atomic interactions and profile of small molecules disrupting protein-protein interfaces: the TIMBAL database. Chem Biol Drug Des 74:457–467

    CAS  PubMed  Google Scholar 

  159. Hann MM (2011) Molecular obesity, potency and other addictions in drug discovery. MedChemComm 2:349–355

    CAS  Google Scholar 

  160. Higueruelo AP, Schreyer A, Bickerton GRJ et al (2012) What can we learn from the evolution of protein-ligand interactions to aid the design of new therapeutics? PLoS One 7:e51742

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Arkin MR, Randal M, DeLano WL et al (2003) Binding of small molecules to an adaptive protein-protein interface. Proc Natl Acad Sci U S A 100:1603–1608

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Sauve K, Nachman M, Spence C et al (1991) Localization in human interleukin 2 of the binding site to the alpha chain (p55) of the interleukin 2 receptor. Proc Natl Acad Sci U S A 88:4636–4640

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Zurawski SM, Vega F Jr, Doyle EL et al (1993) Definition and spatial location of mouse interleukin-2 residues that interact with its heterotrimeric receptor. EMBO J 12:5113–5119

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Scott DE, Ehebauer MT, Pukala T et al (2013) Using a fragment-based approach to target protein-protein interactions. Chembiochem 14:332–342

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Wyatt PG, Woodhead AJ, Berdini V et al (2008) Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design. J Med Chem 51:4986–4999

    CAS  PubMed  Google Scholar 

  166. Howard S, Berdini V, Boulstridge JA et al (2009) Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity. J Med Chem 52:379–388

    CAS  PubMed  Google Scholar 

  167. Frederickson M, Callaghan O, Chessari G et al (2008) Fragment-based discovery of mexiletine derivatives as orally bioavailable inhibitors of urokinase-type plasminogen activator. J Med Chem 51:183–186

    CAS  PubMed  Google Scholar 

  168. Antonysamy SS, Aubol B, Blaney J et al (2008) Fragment-based discovery of hepatitis C virus NS5b RNA polymerase inhibitors. Bioorg Med Chem Lett 18:2990–29995

    CAS  PubMed  Google Scholar 

  169. Antonysamy S, Hirst G, Park F et al (2009) Fragment-based discovery of JAK-2 inhibitors. Bioorg Med Chem Lett 19:279–282

    CAS  PubMed  Google Scholar 

  170. Edfeldt FNB, Folmer RHA, Breeze AL (2011) Fragment screening to predict druggability (ligandability) and lead discovery success. Drug Discov Today 16:284–287

    CAS  PubMed  Google Scholar 

  171. Winter A, Higueruelo P et al (2012) Biophysical and computational fragment-based approaches to targeting protein-protein interactions: applications in structure-guided drug discovery. Q Rev Biophys 45:383–426

    CAS  PubMed  Google Scholar 

  172. Jubb H, Higueruelo A, Winter A et al (2012) Structural biology and drug discovery for protein–protein interactions. Trends Pharmacol Sci 33:241–248

    CAS  PubMed  Google Scholar 

  173. Keserü GM, Makara GM (2009) The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov 8:203–212

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom L. Blundell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ascher, D.B., Jubb, H.C., Pires, D.E.V., Ochi, T., Higueruelo, A., Blundell, T.L. (2015). Protein-Protein Interactions: Structures and Druggability. In: Scapin, G., Patel, D., Arnold, E. (eds) Multifaceted Roles of Crystallography in Modern Drug Discovery. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9719-1_12

Download citation

Publish with us

Policies and ethics