Skip to main content

Travelling Bacteria: Vectors

  • Chapter
  • First Online:
Invertebrate Bacteriology
  • 808 Accesses

Abstract

Bacterial diseases transmitted by blood-sucking arthropods are reviewed, including the aetiology and management of arthropod-transmitted diseases of man like bubonic plague, lyme disease and relapsing fevers. Transmission of other Borrelia-associated diseases is also reviewed, with data on rickettsioses, epidemic or endemic typhus and spotted fever vectors, tularemia, bartonellosis and others. Arthropod-transmitted diseases of animal domestic species and wildlife are also discussed. Aspects concerning vectored plant pathogens causing phloematic, xylematic and other diseases are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Phoresy = movement, transport.

  2. 2.

    World Health Organization, http://www.who.int/en/.

  3. 3.

    In honor of W. Burgdorfer, medical entomologist.

  4. 4.

    Center for Disease Control and Prevention, Atlanta, GA, USA .

  5. 5.

    In transstadial transmission (also called trans-ovarial transmission ) the bacteria vertically infect the developing eggs inside the adult female, eventually passing to the embryo and larval stages. This process has the potential to confer an efficient vector capacity to all larvae descending from a single female.

  6. 6.

    The genus and species names honor H. T. Rickett and S. J. M. von Prowazek, who died during their pioneering studies on rickettsiae .

  7. 7.

    Diseases passed from animals to humans.

  8. 8.

    Tropism = movement. Positive tropism indicates displacement or orienting towards a given factor or space; negative tropism indicate movements in the opposite direction.

  9. 9.

    European Plant Protection Organization.

References

  • Acha, P. N., & Szyfres, B. (2001). Zoonoses and communicable diseases common to man and animals (Vol. 2). Washington, DC: Pan American Health Organization, 387 pp.

    Google Scholar 

  • Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A., & Carniel, E. (1999). Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proceedings of the National Academy of Science USA, 96, 14043–14048.

    Article  CAS  Google Scholar 

  • Acosta Muniz, C., Jaillard, D., Lemaitre, B., & Boccard, F. (2007). Erwinia carotovora Evf antagonizes the elimination of bacteria in the gut of Drosophila larvae. Cell Microbiology, 9, 106–119.

    Article  CAS  Google Scholar 

  • Adams, J. R., Schmidtmann, E. T., & Azad, A. F. (1990). Infection of colonized cat fleas, Ctenocephalides felis (Bouche), with a rickettsia-like microorganism. American Journal of Tropical Medicine and Hygiene, 43, 400–409.

    CAS  PubMed  Google Scholar 

  • Agrios, G. N. (2008). Transmission of plant diseases by insects. In Encyclopedia of entomology (pp. 3853–3885). Dordrecht: Springer.

    Google Scholar 

  • Ahern, S. J., Das, M., Bhowmick, T. S., Young, R., & Gonzalez, C. F. (2014). Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas. Journal of Bacteriology, 196, 459–471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alma, A., et al. (1997). Identification of phytoplasmas in eggs, nymphs and adults of Scaphoideus titanus ball reared on healthy plants. Insect Molecular Biology, 6, 115–121.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, J. F., Magnarelli, L. A., & Stafford, K. C. (1990). Bird-feeding ticks transstadially transmit Borrelia burgdorferi that infect Syrian hamsters. Journal of Wildlife Disease, 26, 1–10.

    Article  CAS  Google Scholar 

  • Anderson, B. E., et al. (1993). Amblyomma americanum: A potential vector of human ehrlichiosis. American Journal of Tropical Medicine and Hygiene, 49, 239–244.

    CAS  PubMed  Google Scholar 

  • Anderson, A., et al. (2013). Diagnosis and management of Q fever. Recommendations from the CDC and the Q fever working group. Morbidity and Mortality Weekly Report, 62(RR03), 1–23.

    Google Scholar 

  • Avedaño-Herrera, R., Toranzo, A. E., & Magariños, B. (2006). Tenacibaculosis infection in marine fish caused by Tenacibaculum maritimum: A review. Disease of Aquatic Organisms, 71, 255–266.

    Article  Google Scholar 

  • Azad, A. F., Radulovic, S., Higgins, J. A., Noden, B. H., & Troyer, J. M. (1997). Flea-borne rickettsioses: Ecologic considerations. Emerging Infectious Diseases, 3, 319–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertaccini, A., Duduk, B., Paltrinieri, S., & Contaldo, N. (2014). Phytoplasmas and phytoplasma diseases: A severe threat to agriculture. American Journal of Plant Sciences, 5, 1763–1788.

    Article  Google Scholar 

  • Blanc, S. (2004). Insect transmission of viruses (Microbe–vector interactions in vector-borne diseases, Vol. 63, pp. 43–62). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bové, J. M. (1986). Stubborn and its natural transmission in the Mediterranean area and in the near east. FAO Plant Protection Bulletin, 34, 15–23.

    Google Scholar 

  • Bové, J. M. (1997). Spiroplasmas: Infectious agents of plants, arthropods and vertebrates. Wiener Klinische Wochenschrift, 109, 604–612.

    PubMed  Google Scholar 

  • Bové, J. M. (2006). Huanglongbing. Journal of Plant Pathology, 88, 7–37.

    Google Scholar 

  • Bové, J. M., Renaudin, J., Saillard, C., Foissac, X., & Garnier, M. (2003). Spiroplasma citri, a plant pathogenic mollicute: Relationships with its two hosts, the plant and the leafhopper vector. Annual Review of Phytopathology, 41, 483–500.

    Article  PubMed  CAS  Google Scholar 

  • Bozeman, F. M., Masiello, S. A., Williams, M. S., & Elisberg, B. L. (1975). Epidemic typhus rickettsiae isolated from flying squirrels. Nature, 255, 545–547.

    Article  CAS  PubMed  Google Scholar 

  • Braderic, N., & Punda-Polic, V. (1992). Cutaneous anthrax due to penicillin-resistant Bacillus anthracis transmitted by an insect bite. Lancet, 340, 306–307.

    Article  Google Scholar 

  • Breitschwerdt, E. B., Hegarty, B. C., Davidson, M. G., & Szabados, N. S. A. (1995). Evaluation of the pathogenic potential of Rickettsia canada and Rickettsia prowazekii organisms in dogs. Journal of the American Veterinary Medical Association, 207, 58–63.

    CAS  PubMed  Google Scholar 

  • Brown, J. K. (2007). The Bemisia tabaci complex: Genetic and phenotypic variation and relevance to TYLCV–vector interactions. In H. Czosnek (Ed.), Tomato yellow leaf curl virus disease (pp. 25–56). NL: Springer.

    Chapter  Google Scholar 

  • Brown, R. N., & Lane, R. S. (1992). Lyme disease in California: A novel enzootic transmission cycle of Borrelia burgdorferi. Science, 256, 1439–1442.

    Article  CAS  PubMed  Google Scholar 

  • Caimano, M. (2006). The genus Borrelia. Prokaryotes, 7, 235–293.

    Google Scholar 

  • Cariddi, C., et al. (2014). Isolation of a Xylella fastidiosa strain infecting olive and oleander in Apulia, Italy. Journal of Plant Pathology, 96, 1–5.

    Google Scholar 

  • Carloni, E., et al. (2011). Exitianus obscurinervis (Hemiptera: Cicadellidae), a new experimental vector of Spiroplasma kunkelii. Journal of Economic Entomology, 104, 1793–1799.

    Article  CAS  PubMed  Google Scholar 

  • Carlyon, J. A., Latif, D. A., Pypaert, M., Lacy, P., & Fikrig, E. (2004). Anaplasma phagocytophilum utilizes multiple host evasion mechanisms to thwart NADPH oxidase-mediated killing during neutrophil infection. Infection and Immunity, 72, 4772–4783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartwright, F. F., & Biddiss, M. (2014). Disease and history (3rd ed.). London: Thistle Publishing Ltd., 252 pp.

    Google Scholar 

  • DaMassa, A. J., & Adler, H. E. (1979). Avian spirochetosis: Natural transmission by Argas (Persicargas) sanchezi (Ixodoidea: Argasidae) and existence of different serologic and immunologic types of Borrelia anserina in the United States. American Journal of Veterinary Research, 40, 154–157.

    CAS  PubMed  Google Scholar 

  • Dantas-Torres, F., Chomel, B. B., & Otranto, D. (2012). Ticks and tick-borne diseases: A one health perspective. Trends in Parasitology, 28, 437–446.

    Article  PubMed  Google Scholar 

  • Das, M., Bhowmick, T. S., Ahern, S. J., Young, R., & Gonzalez, C. F. (2015). Control of Pierce’s disease by phage. PLoS ONE, 10, e0128902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dautel, H., & Kahl, O. (1999). Ticks (Acari: Ixodoidea) and their medical importance in the urban environment. In Proceedings of the third international conference on urban pests, pp .73–82.

    Google Scholar 

  • Davis, M. J., Kramer, J. B., Fewerda, F. H., & Brunner, B. R. (1996). Association of a bacterium and not a phytoplasma with papaya bunchy top disease. Phytopathology, 86, 102–109.

    Article  Google Scholar 

  • Dillman, A. R., et al. (2012). An entomopathogenic nematode by any other name. PLoS Pathogens, 8, e1002527. doi:10.1371/journal.ppat.1002527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolan, M. C., et al. (2016). Vector competence of the blacklegged tick, Ixodes scapularis, for the recently recognized Lyme borreliosis spirochete Candidatus Borrelia mayonii. Ticks and Tick-Borne Diseases, 7. http://dx.doi.org/10.1016/j.ttbdis.2016.02.012.

  • Duduk, B., & Bertaccini, A. (2011). Phytoplasma classification: Taxonomy based on 16S ribosomal gene, is it enough? Phytopathogenic Mollicutes, 1, 3–13.

    Article  Google Scholar 

  • Dworkin, M. S., Schwan, T. G., Anderson, D. E., Jr., & Borchardt, S. M. (2008). Tick-borne relapsing fever. Infectious Disease Clininc of North America, 22, 449–468.

    Article  Google Scholar 

  • Eastburn, R. L., Fritsche, T. F., & Terhune, C. A. (1987). Human intestinal infection with Nanophyetus salmincola from salmonid fishes. American Journal of Tropical Medicine and Hygiene, 36, 586–591.

    CAS  PubMed  Google Scholar 

  • Eisen, R. J., & Gage, K. L. (2009). Adaptive strategies of Yersinia pestis to persist during inter-epizootic and epizootic periods. Veterinary Research, 40, 01.

    Article  Google Scholar 

  • Eisen, R. J., et al. (2008). Early-phase transmission of Yersinia pestis by cat fleas (Ctenocephalides felis) and their potential role as vectors in a plague-endemic region of Uganda. The American Journal of Tropical Medicine and Hygiene, 78, 949–956.

    PubMed  Google Scholar 

  • Embers, M. E., & Lopez, J. E. (2012). Immune resistance by relapsing fever spirochetes. In M. E. Embers (Ed.), The pathogenic spirochetes: Strategies for evasion of host immunity and persistence (pp. 173–190). New York: Springer.

    Chapter  Google Scholar 

  • Emerson, P. M., & Bailey, R. L. (1999). Trachoma and fly control. Community Eye Health, 12, 57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emerson, P. M., Bailey, R. L., Mahadi, O. S., Walraven, G. E., & Lindsay, S. W. (2000). Transmission ecology of the fly Musca sorbens, a putative vector of trachoma. Transactions of the Royal Society of Tropical Medicine and Hygiene, 94, 28–32.

    Article  CAS  PubMed  Google Scholar 

  • Eremeeva, M. E., et al. (2008). Rickettsia typhi and R. felis in rat fleas (Xenopsylla cheopis), Oahu, Hawaii. Emerging Infectious Diseases, 14, 1613–1615.

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans, J. R., & Solomon, A. W. (2011). Antibiotics for trachoma. The Cochrane Database of Systematic Reviews, 16, CD001860.

    Google Scholar 

  • Feigin, R., Cherry, J., Demmler-Harrison, G., & Kaplan, S. (2009). Feigin & Cherry’s textbook of pediatric infectious diseases (6th ed.). Philadelphia: Saunders, Elsevier.

    Google Scholar 

  • Felz, M. W., Smith, C. D., & Swift, T. R. (2000). A six-year-old girl with tick paralysis. New England Journal of Medicine, 342, 90–94.

    Article  CAS  PubMed  Google Scholar 

  • Fenollar, F., & Raoult, D. (1999). Diagnosis of rickettsial diseases using samples dried on blotting paper. Clinical Diagnostic and Laboratory Immunology, 6, 483–488.

    CAS  Google Scholar 

  • Ferguson, H. W., et al. (2010). Jellyfish as vectors of bacterial disease for farmed salmon (Salmo salar). Journal of Veterinary Diagnostic Investigation, 22, 376–382.

    Article  PubMed  Google Scholar 

  • Fournier, P. E., & Raoult, D. (2009). Current knowledge on phylogeny and taxonomy of Rickettsia spp. Annals of the New York Academy of Science, 1166, 1–11.

    Article  CAS  Google Scholar 

  • Frances, S. P., Watcharapichat, P., & Phulsuksombati, D. (2001). Vertical transmission of Orientia tsutsugamushi in two lines of naturally infected Leptotrombidium deliense (Acari: Trombiculidae). Journal of Medical Entomology, 38, 17–21.

    Article  CAS  PubMed  Google Scholar 

  • Frölich, K., Thiede, S., Kozikowski, T., & Jakob, W. (2002). A review of mutual transmission of important infectious diseases between livestock and wildlife in Europe. Annals of the New York Academy of Sciences, 969, 4–13.

    Article  PubMed  Google Scholar 

  • Golino, D. A., & Oldfield, G. N. (1990). Plant pathogenic spiroplasmas and their leafhopper vectors. Advances in Disease Vector Research, 6, 267–299.

    Article  Google Scholar 

  • Gottwald, T. R. (2010). Current epidemiological understanding of citrus Huanglongbing. Annual Review of Phytopathology, 48, 119–139.

    Article  CAS  PubMed  Google Scholar 

  • Grafton-Cardwell, E. E., Stelinski, L. L., & Stansly, P. A. (2013). Biology and management of Asian citrus psyllid, vector of the huanglongbing pathogens. Annual Reviews of Entomology, 58, 413–432.

    Article  CAS  Google Scholar 

  • Gray, J. S., Kahl, O., Janetzki-Mittmann, C., Stein, J., & Guy, E. (1994). Acquisition of Borrelia burgdorferi by Ixodes ricinus ticks fed on the European hedgehog, Erinaceus europaeus L. Experimental and Applied Acarology, 18, 485–491.

    Article  CAS  PubMed  Google Scholar 

  • Gubler, D. J. (2009). Vector-borne diseases. Revue Scientifique et Technique (International Office of Epizootics), 28, 583–588.

    CAS  Google Scholar 

  • Guo, B. P., et al. (2009). Relapsing fever Borrelia binds to neolacto glycans and mediates rosetting of human erythrocytes. Proceedings of the National Academy of Science USA, 106, 19280–19285.

    Article  CAS  Google Scholar 

  • Gurr, G. M., et al. (2015). Phytoplasmas and thier insect vectors: Implications for date palm. In W. Wakil, J. Romeno Falero, & T. A. Miller (Eds.), Sustainable pest managment in date palm: Current status and emerging challenges (pp. 287–314). Cham: Springer.

    Google Scholar 

  • Hanboonsong, Y., Choosai, C., Panyim, S., & Damark, S. (2002). Transovarial transmission of sugarcane white leaf phytoplasma in the insect vector Matsumuratettrix hiroglyphicus (Matsumura). Insect Molecular Biology, 11, 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Hanson, D. A., Britten, H. B., Restani, M., & Washburn, L. R. (2007). High prevalence of Yersinia pestis in black-tailed prairie dog colonies during an apparent enzootic phase of sylvatic plague. Conservation Genetics, 8, 789–795.

    Article  CAS  Google Scholar 

  • Headley, S. A., Scorpio, D. G., Vidotto, O., & Dumler, J. S. (2011). Neorickettsia helminthoeca and salmon poisoning disease: A review. The Veterinary Journal, 187, 165–173.

    Article  PubMed  Google Scholar 

  • Herrin, B., Mahapatra, S., Blouin, E., & Shaw, E. (2011). Growth of Coxiella burnetii in the Ixodes scapularis-derived IDE8 tick cell line. Vector Borne Zoonotic Diseases, 11, 917–922.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hii, S. F., Lawrence, A. L., Cuttell, L., Tynas, R., Megat Abd Rani, P. A., Šlapeta, J., & Traub, R. J. (2015). Evidence for a specific host-endosymbiont relationship between ‘Rickettsia sp. genotype RF2125’ and Ctenocephalides felis orientis infesting dogs in India. Parasites and Vectors, 8, 169.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinnebusch, B. J., & Erickson, D. L. (2008). Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Current Topics in Microbiology and Immunology, 322, 229–248.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howden, K. J., Geale, D. W., Paré, J., Golsteyn-Thomas, E. J., & Gajadhar, A. A. (2010). An update on bovine anaplasmosis (Anaplasma marginale) in Canada. Canadian Veterinary Journal, 51, 837–840.

    PubMed  PubMed Central  Google Scholar 

  • Inhorn, M. C., & Brown, P. J. (1990). The anthropology of infectious disease. Annual Review of Anthropology, 19, 89–117.

    Article  Google Scholar 

  • Jagoueix, S., Bové, J. M., & Garnier, M. (1994). The phloem-limited bacterium of greening disease of citrus is a member of the alpha subdivision of the Proteobacteria. International Journal of Systematic Bacteriology, 44, 379–386.

    Article  CAS  PubMed  Google Scholar 

  • James, C. K. N. G., & Perry, K. L. (2004). Transmission of plant viruses by aphid vectors. Molecular Plant Pathology, 5, 505–511.

    Article  Google Scholar 

  • Janse, J. D., & Obradovic, A. (2010). Xylella fastidiosa: Its biology, diagnosis, control and risks. Journal of Plant Pathology, 92, S1.35–S1.48.

    Google Scholar 

  • Kernif, T., et al. (2014). Acquisition and excretion of Bartonella quintana by the cat flea, Ctenocephalides felis felis. Molecular Ecology, 23, 1204–1212.

    Article  CAS  PubMed  Google Scholar 

  • Klein, M., Rasooly, P., & Raccah, B. (1988). New findings on the transmission of Spiroplasma citri, the citrus stubborn disease agent in Israel, by a beet leafhopper from the Jordan valley. Hassadeh, 68, 1736–1737. (In Jewish).

    Google Scholar 

  • Kocan, K. M., et al. (2012). Sheep experimentally infected with a human isolate of Anaplasma phagocytophilum serve as a host for infection of Ixodes scapularis ticks. Ticks and Tick-Borne Diseases, 3, 147–153.

    Article  PubMed  Google Scholar 

  • Koehler, J. E., & Tappero, J. W. (1993). Bacillary angiomatosis and bacillary peliosis in patients infected with human immunodeficiency virus. Clinical Infectious Diseases, 17, 612–624.

    Article  CAS  PubMed  Google Scholar 

  • Konnov, N. P., Popov, N. V., Velichko, L. N., & Knyazeva, T. V. (2010). The phenomenon of Yersinia pestis biofilm formation in the organism of fleas. Entomological Review, 90, 638–642.

    Article  Google Scholar 

  • Kwon, M. O., Wayadande, A. C., & Fletcher, J. (1999). Spiroplasma citri movement into the intestines and salivary glands of its leafhopper vector, Circulifer tenellus. Bacteriology, 89, 1144–1151.

    CAS  Google Scholar 

  • Labruna, M. B., et al. (2007). Infection by Rickettsia bellii and Candidatus “Rickettsia amblyommii” in Amblyomma neumanni ticks from Argentina. Microbial Ecology, 54, 126–133.

    Article  PubMed  Google Scholar 

  • Larsson, C., Comstedt, P., Olsen, B., & Bergstrom, S. (2007). First record of Lyme disease Borrelia in the Arctic. Vector-Borne and Zoonotic Diseases, 7, 453–456.

    Article  PubMed  Google Scholar 

  • Lee, I. M., Davis, R. E., & Gundersen-Rinda, D. E. (2000). Phytoplasma: Phytopathogenic Mollicutes. Annual Review of Microbiology, 54, 221–255.

    Article  CAS  PubMed  Google Scholar 

  • Lee, I. M., Bottner-Parker, K. D., Zhao, Y., Villalobos, W., & Moreira, L. (2011). ‘Candidatus Phytoplasma costaricanum’ a novel phytoplasma associated with an emerging disease in soybean (Glycine max). International Journal of Systematic and Evolutonary Microbiology, 61, 2822–2826.

    Article  CAS  Google Scholar 

  • Legendre, B., et al. (2014). Identification and characterisation of Xylella fastidiosa isolated from coffee plants in France. Journal of Plant Pathology, 96, S4.100.

    Google Scholar 

  • Lessio, F., & Alma, A. (2006). Spatial distribution of nymphs of Scaphoideus titanus (Homoptera: Cicadellidae) in grapes, and evaluation of sequential sampling plans. Journal of Economic Entomology, 99, 578–582.

    Article  PubMed  Google Scholar 

  • Liebisch, A., & Olbrich, S. (1991). The hedgehog tick, Ixodes hexagonus Leach, 1815, as a vector of Borrelia burgdorferi in Europe. In F. Dusbabek & V. Bukva (Eds.), Modern acarology (pp. 67–71). Prague: Academia.

    Google Scholar 

  • Lin, H., et al. (2011). The complete genome sequence of ‘Candidatus Liberibacter solanacearum’, the bacterium associated with potato zebra chip disease. PLoS ONE, 6, e19135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisbôa, R. S., et al. (2009). Avian spirochetosis in chickens following experimental transmission of Borrelia anserina by Argas (Persicargas) miniatus. Avian Diseases, 53, 166–168.

    Article  PubMed  Google Scholar 

  • Loconsole, G., et al. (2014). A Xylella fastidiosa strain with unique biology and phylogeny is associated with a severe disease of olive in Southern Apulia. Journal of Plant Pathology, 96, S4.38.

    Google Scholar 

  • Loconsole, G., et al. (2016). Intercepted isolates of Xylella fastidiosa in Europe reveal novel genetic diversity. European Journal of Plant Pathology, 144. In print. doi 10.1007/s10658-016-0894-x.

  • Lukin, E. P., Vorobev, A. A., & Bykov, A. S. (2001). Taxonomy and classification of Rickettsiae. Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii, 2, 105–110. [In Russian].

    PubMed  Google Scholar 

  • Magnarelli, L. A., Anderson, J. F., Hyland, K. E., Fish, D., & Mcaninch, J. B. (1988). Serologic analyses of Peromyscus leucopus, a rodent reservoir for Borrelia burgdorferi, in northeastern United States. Journal of Clinical Microbiology, 26, 1138–1141.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marsollier, L., et al. (2002). Aquatic insects as a vector for Mycobacterium ulcerans. Applied and Environmental Microbiology, 68, 4623–4628.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martelli, G. P., Boscia, D., Porcelli, F., & Saponari, M. (2015). The olive quick decline syndrome in south-east Italy: A threatening phytosanitary emergency. European Journal of Plant Pathology, 144, 235–243.

    Article  Google Scholar 

  • Mehlhorn, H. (2008). Dermacentor reticulatus. In H. Mehlhorn (Ed.), Encyclopedia of parasitology (pp. 324–325). Berlin: Springer.

    Chapter  Google Scholar 

  • Merritt, R. W., et al. (2010). Ecology and transmission of buruli ulcer disease: A systematic review. PLoS Neglected Tropical Diseases, 4, e911.

    Article  PubMed  PubMed Central  Google Scholar 

  • Minard, G., Mavingui, P., & Valiente Moro, C. (2013). Diversity and function of bacterial microbiota in the mosquito holobiont. Parasites and Vectors, 6, 146.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitani, H., Talbert, A., & Fukunaga, M. (2004). New world relapsing fever Borrelia found in Ornithodoros porcinus ticks in Central Tanzania. Microbiology and Immunology, 48, 501–505.

    Article  CAS  PubMed  Google Scholar 

  • Mitrović, M., et al. (2015). Potential hemipteran vectors of stolbur phytoplasma in potato fields in Serbia. Phytopathogenic Mollicutes, 5, S49–S50.

    Article  Google Scholar 

  • Mohle-Boetani, J. C., et al. (1996). Bacillary angiomatosis and bacillary peliosis in patients infected with human immunodeficiency virus: Clinical characteristics in a case-control study. Clinical Infectious Diseases, 22, 794–800.

    Article  CAS  PubMed  Google Scholar 

  • Morone, C., et al. (2007). Epidemiology of flavescence dorée in vineyards in northwestern Italy. Phytopathology, 97, 1422–1427.

    Article  CAS  PubMed  Google Scholar 

  • Moya-Raygoza, G., Palomera-Avalos, V., & Galaviz-Mejia, C. (2007). Field overwintering biology of Spiroplasma kunkelii (Mycoplasmatales: Spiroplasmataceae) and its vector Dalbulus maidis (Hemiptera: Cicadellidae). Annals of Applied Biology, 151, 373–379.

    Article  CAS  Google Scholar 

  • Mumcuoglu, K. Y., et al. (1993). Ecological studies on the Brown Dog Tick Rhipicephalus sanguineus (Acari: Ixodidae) in southern Israel and its relationship to spotted fever group rickettsiae. Journal of Medical Entomology, 30, 114–121.

    Article  CAS  PubMed  Google Scholar 

  • Musetti, R., et al. (2013). Phytoplasma-triggered Ca2+ influx is involved in sieve-tube blockage. Molecular Plant-Microbes Interactions, 26, 379–386.

    Article  CAS  Google Scholar 

  • Nadarasah, G., & Stavrinides, J. (2011). Insects as alternative hosts for phytopathogenic bacteria. FEMS Microbiology Reviews, 35, 555–575.

    Article  CAS  PubMed  Google Scholar 

  • Norval, R. A. I., Andrew, H. R., Yunker, C. E., & Burridge, M. J. (1992). Biological processes in the epidemiology of heartwater. In B. Fivaz, T. Petney, & I. Horak (Eds.), Tick vector biology (pp. 71–86). Berlin: Springer Verlag.

    Chapter  Google Scholar 

  • Oh, C. S., & Beer, S. (2005). Molecular genetis of Erwinia amylovora involved in the development of fire blight. FEMS Microbiology Letters, 253, 185–192.

    Article  CAS  PubMed  Google Scholar 

  • Ohl, M. E., & Spach, D. H. (2000). Bartonella quintana and urban trench fever. Clinical Infectious Diseases, 31, 131–135.

    Article  CAS  PubMed  Google Scholar 

  • Oldfield, G. N. (1988). Ecological associations of Spiroplasma citri with insects, plants and other plant mycoplasmas in the western United States. In K. Maramorosch & S. P. Raychaudhuri (Eds.), Mycoplasma diseases of crops. Basic and applied aspects (pp. 175–191). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Olsén, B., Jaenson, T. G. T., Noppa, L., Bunikis, J., & Bergström, S. (1993). A Lyme borreliosis cycle in seabirds and Ixodes uriae ticks. Nature, 362, 340–342.

    Article  PubMed  Google Scholar 

  • Olsén, B., Jaenson, T. G. T., & Bergström, S. (1995). Prevalence of Borrelia burgdorferi sensu lato-infected ticks on migrating birds. Applied and Environmental Microbiology, 61, 3082–3087.

    PubMed  PubMed Central  Google Scholar 

  • Paddock, C. D., et al. (2004). Rickettsia parkeri: A newly recognized cause of spotted fever rickettsiosis in the United States. Clinical Infectious Diseases, 38, 805–811.

    Article  PubMed  Google Scholar 

  • Pantoja, M. L., et al. (2015). Rickettsia-related bacteria associated with papaya plants showing bunchy top disease in Cuba. Journal of General Plant Pathology, 81, 166–168.

    Article  Google Scholar 

  • Paris, D. H., Shelite, T. R., Day, N. P., & Walker, D. H. (2013). Unresolved problems related to scrub typhus: A seriously neglected life-threatening disease. American Journal of Tropical Medicine and Hygiene, 89, 301–307.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parola, P., & Raoult, D. (2001). Ticks and tickborne bacterial diseases in humans: An emerging infectious threat. Clinical Infectious Diseases, 32, 897–928.

    Article  CAS  PubMed  Google Scholar 

  • Parola, P., Labruna, M. B., & Raoult, D. (2009). Tick-borne Rickettsioses in America: Unanswered questions and emerging diseases. Current Infectious Disease Reports, 11, 40–50.

    Article  PubMed  Google Scholar 

  • Parola, P., et al. (2012). Update on tick-borne rickettsioses around the world: A geographic approach. Clinical Microbiology Reviews, 26, 657–702.

    Article  Google Scholar 

  • Pérez-Osorio, C. E., Zavala-Velázquez, J. E., Arias León, J. J., & Zavala-Castro, J. E. (2008). Rickettsia felis as emergent global threat for humans. Emerging Infectious Diseases, 14, 1019–1023.

    Article  PubMed  PubMed Central  Google Scholar 

  • Portaels, F., Elsen, P., Guimaraes-Peres, A., Fonteyne, P. A., & Meyers, W. M. (1999). Insects in the transmission of Mycobacterium ulcerans infection (Buruli ulcer). Lancet, 353, 986.

    Article  CAS  PubMed  Google Scholar 

  • Pritt, B. S., et al. (2016). Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: A descriptive study. The Lancet Infectious Diseases, 16, 556–564.

    Google Scholar 

  • Purcell, A. H. (1997). Xylella fastidiosa, a regional problem or global threat? Journal of Plant Pathology, 79, 99–105.

    Google Scholar 

  • Purcell, A. H. (2008). Transmission of Xylella fastidiosa bacteria by xylem-feeding insects. In Encyclopedia of entomology (pp. 3885–3886). Dordrecht: Springer.

    Google Scholar 

  • Purcell, A. H., Finlay, A. H., & McClean, D. L. (1979). Pierce’s disease bacterium: Mechanism of transmission by leafhopper vectors. Science, 206, 839–841.

    Article  CAS  PubMed  Google Scholar 

  • Rand, P. W., Lacombe, E. H., Smith, R. P., & Ficker, J. (1998). Participation of birds (Aves) in the emergence of Lyme disease in southern Maine. Journal of Medical Entomology, 35, 270–276.

    Article  CAS  PubMed  Google Scholar 

  • Raoult, D., & Roux, V. (1997). Rickettsioses as paradigms of new or emerging infectious diseases. Clinical Microbiology Review, 10, 694–719.

    CAS  Google Scholar 

  • Raoult, D., & Roux, V. (1999). The body louse as a vector of reemerging human diseases. Clinical Infectious Diseases, 29, 888–911.

    Article  CAS  PubMed  Google Scholar 

  • Redak, R. A., et al. (2004). The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annual Review on Entomology, 49, 243–270.

    Article  CAS  Google Scholar 

  • Rikihisa, Y., Dumler, J. S., & Dasch, G. A. (2005). Neorickettsia. In G. M. Garrity (Ed.), Bergey’s manual of systemic bacteriology (2nd ed., Vol. 2, pp. 132–137). New York: Springer.

    Chapter  Google Scholar 

  • Rizzoli, A., et al. (2004). Ixodes ricinus, malattie trasmesse e reservoirs. Parassitologia, 46, 119–122.

    CAS  PubMed  Google Scholar 

  • Robinson, D., Leo, N., Prociv, P., & Barker, S. C. (2003). Potential role of head lice, Pediculus humanus capitis, as vectors of Rickettsia prowazekii. Parasitology Research, 90, 209–211.

    Article  CAS  PubMed  Google Scholar 

  • Roy-Dufresne, E., Logan, T., Simon, J. A., Chmura, G. L., & Millien, V. (2013). Poleward expansion of the white-footed mouse (Peromyscus leucopus) under climate change: Implications for the spread of Lyme disease. PLoS ONE, 8, e80724. doi:10.1371/journal.pone.0080724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rymaszewska, A., & Grenda, S. (2008). Bacteria of the genus Anaplasma – characteristics of Anaplasma and their vectors: A review. Veterinární Medicína, 53, 573–584.

    Google Scholar 

  • Saillard, C., et al. (1987). Spiroplasma phoeniceum sp. nov. a new plant-pathogenic species from Syria. International Journal of Systematic Bacteriology, 37, 106–115.

    Article  CAS  Google Scholar 

  • Santos, C. F., & Carvalho, C. B. (2006). First report of Anaplasma bovis (Donatien and Lestoquard, 1936) Dumler et al. (2001) at micro region of Campos dos Goytacazes, State of Rio de Janeiro, Brazil. Revista Brasileira de Parasitologia Veterinária, 15, 126–127.

    PubMed  Google Scholar 

  • Saponari, M., et al. (2014). Infectivity and transmission of Xylella fastidiosa Salento strain by Philaenus spumarius L. (Hemiptera: Aphrophoridae) in Apulia, Italy. Journal of Economic Entomology, 107, 1316–1319.

    Article  PubMed  Google Scholar 

  • Schaad, N. W., Postnikova, E., Lacy, G., Fatmi, M., & Chang, C. J. (2004). Xylella fastidiosa subspecies: X. fastidiosa subsp. [correction] fastidiosa [correction] subsp. nov., X. fastidiosa subsp. multiplex subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. Systematic and Applied Microbiology, 27, 290–300.

    Article  CAS  PubMed  Google Scholar 

  • Schoeler, G. B., Morón, C., Richards, A., Blair, P. J., & Olson, J. G. (2005). Human spotted fever rickettsial infections. Emerging Infectious Diseases, 11, 622–624.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwan, T. G. (1996). Ticks and Borrelia: Model systems for investigating pathogen-arthropod interactions. Infectious Agents Disease, 5, 167–181.

    CAS  PubMed  Google Scholar 

  • Schwanz, L. E., Voordouw, M. J., Brisson, D., & Ostfeld, R. S. (1989). Borrelia burgdorferi has minimal impact on the Lyme disease reservoir host Peromyscus leucopus. Vector-Borne and Zoonotic Diseases, 11, 117–124.

    Article  Google Scholar 

  • Shimelash, D., Alemu, T., Addis, T., Turyagyenda, F. L., & Blomme, G. (2008). Banana Xanthomonas wilt in Ethiopia: Occurrence and insect vector transmission. African Crop Science Journal, 16, 75–87.

    Google Scholar 

  • Shiumi, T., & Sugiura, M. (1984). Differences among Macrosteles orientalis-transmitted MLO, potato purple-top wilt MLO in Japan and aster yellows MLO from USA). Annals of the Phytopathological Society of Japan, 50, 455–460. (In Japanese).

    Article  Google Scholar 

  • Silverman, D. J. (1991). Some contributions of electron microscopy to the study of the Rickettsiae. European Journal of Epidemiology, 7, 200–206.

    Article  CAS  PubMed  Google Scholar 

  • Socolovschi, C., et al. (2009). Transovarial and trans-stadial transmission of Rickettsiae africae in Amblyomma variegatum ticks. Clinical Microbiology and Infection, 15(Suppl. 2), 317–318.

    Article  PubMed  Google Scholar 

  • Sonenshine, D. E. (1994). Ecological dynamics of tick-borne zoonoses. New York: Oxford University Press, 464 pp.

    Google Scholar 

  • Spencer, J. A., et al. (2003). Evaluation of permethrin and imidacloprid for prevention of Borrelia burgdorferi transmission from blacklegged ticks (Ixodes scapularis) to Borrelia burgdorferi-free dogs. Parasitology Research, 90, S106–S107.

    Article  PubMed  Google Scholar 

  • Spinelli, F., Ciampolini, F., Cresti, M., Geider, K., & Costa, G. (2005). Influence of stigmatic morphology on flower colonization by Erwinia amylovora and Pantoea agglomerans. European Journal of Plant Pathology, 113, 395–405.

    Article  Google Scholar 

  • Stafford, K. C., et al. (1998). Temporal correlations between tick abundance and preva- lence of ticks infected with Borrelia burgdorferi and increasing incidence of Lyme disease. Journal of Clinical Microbiology, 36, 1240–1244.

    PubMed  PubMed Central  Google Scholar 

  • Stavrinides, J., McCloskey, J. K., & Ochman, H. (2009). Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Applied and Environmental Microbiology, 75, 2230–2235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stavrinides, J., No, A., & Ochman, H. (2010). A single genetic locus in the phytopathogen Pantoea stewartii enables gut colonization and pathogenicity in an insect host. Environmental Microbiology, 12, 147–155.

    Article  CAS  PubMed  Google Scholar 

  • Steiert, J. G., & Gilfoy, F. (2004). Infection Rates of Amblyomma americanum and Dermacentor variabilis by Ehrlichia chaffeensis and Ehrlichia ewingii in Southwest Missouri. Vector-Borne and Zoonotic Diseases, 2, 53–60.

    Article  Google Scholar 

  • Stenos, J., Graves, S. R., Popov, V. L., & Walker, D. H. (2003). Aponomma hydrosauri, the reptile-associated tick reservoir of Rickettsia honei on Flinders Island, Australia. American Journal of Tropical Medicine and Hygiene, 69, 314–317.

    PubMed  Google Scholar 

  • Stevenson, H. L., Labruna, M. B., Montenieri, J. A., Kosoy, M. Y., Gage, K. L., & Walker, D. H. (2005). Detection of Rickettsia felis in a new world flea species, Anomiopsyllus nudata (Siphonaptera: Ctenophthalmidae). Journal of Medical Entomology, 42, 163–167.

    Article  CAS  PubMed  Google Scholar 

  • Subandiyah, S., Nikoh, N., Tsuyumu, S., Somowiyarjo, S., & Fukatsu, T. (2000). Complex endosymbiotic microbiota of the citrus psyllid Diaphorina citri (Homoptera: Psylloidea). Zoological Science, 17, 983–989.

    Article  Google Scholar 

  • Summer, E. J., et al. (2010). Genomic and biological analysis of phage Xfas53 and related prophages of Xylella fastidiosa. Journal of Bacteriology, 192, 179–190.

    Article  CAS  PubMed  Google Scholar 

  • Svraka, S., Rolain, J. M., Bechah, Y., Gatabazi, J., & Raoult, D. (2006). Rickettsia prowazekii and real-time polymerase chain reaction. Emerging Infectious Diseases, 12, 428–432.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tedeschi, R., & Alma, A. (2004). Transmission of apple proliferation phytoplasma by Cacopsylla melanoneura (Homoptera: Psyllidae). Journal of Economic Entomology, 97, 8–13.

    Article  PubMed  Google Scholar 

  • Tedeschi, R., & Alma, A. (2006). Fieberiella florii (Homoptera: Auchenorrhyncha) as a vector of “Candidatus Phytoplasma mali”. Plant Disease, 90, 284–290.

    Article  CAS  Google Scholar 

  • Teixeira, D. C., et al. (2005). ’Candidatus Liberibacter americanus’, associated with citrus huanglongbing (greening disease) in Sao Paulo State, Brazil. International Journal of Systematic and Evolutonary Microbiology, 55, 1857–1862.

    Article  CAS  Google Scholar 

  • Thomas, N. J., Bunikis, J., Barbour, A. G., & Wolcott, M. J. (2002). Fatal spirochetosis due to a relapsing fever-like Borrelia sp. in a Northern spotted owl. Journal of Wildlife Diseases, 38, 187–193.

    Article  PubMed  Google Scholar 

  • Tinzaara, W., et al. (2006). Role of insects in the transmission of banana bacterial wilt. African Crop Science Journal, 14, 105–110.

    Google Scholar 

  • Tissot-Dupont, H., Torres, S., Nezri, M., & Raoult, D. (1999). Hyperendemic focus of Q fever retlated to sheep and wind. American Journal of Epidemiology, 150, 67–74.

    Google Scholar 

  • Tondella, M. L., et al. (1994). Isolation of Haemophilus aegyptius associated with Brazilian purpuric fever, of Chloropidae (Diptera) of the genera Hippelates and Liohippelates. Revista do Instituto de Medicina Tropical de São Paulo, 36, 105–109. (In Port.).

    Article  CAS  PubMed  Google Scholar 

  • Toutoungi, L. N., & Gern, L. (1993). Ability of transovarially and subsequent transstadially infected Ixodes hexagonus ticks to maintain and transmit Borrelia burgdorferi in the laboratory. Experimental & Applied Acarology, 17, 581–586.

    Article  CAS  Google Scholar 

  • Trout Fryxell, R. T., & DeBruyn, J. M. (2016). The microbiome of Ehrlichia-infected and uninfected lone star ticks (Amblyomma americanum). PLoS ONE, 11, e0146651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trout Fryxell, R. T., et al. (2012). Survey of Borreliae in ticks, canines, and white-tailed deer from Arkansas, U.S.A. Parasites and Vectors, 5, 139.

    Article  Google Scholar 

  • Unsworth, N. B., et al. (2007). Flinders island spotted fever rickettsioses caused by “marmionii” strain of Rickettsia honei, eastern Australia. Emerging Infectious Diseases, 13, 566–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitorino, L., Chelo, I. M., Bacellar, F., & Zé-Zé, L. (2007). Rickettsiae phylogeny: A multigenic approach. Microbiology, 153, 160–168.

    Article  CAS  PubMed  Google Scholar 

  • Wang, P., et al. (2014). Emergence of Ixodes scapularis and Borrelia burgdorferi, the Lyme disease vector and agent, in Ohio. Frontiers in Cellular and Infection Microbiology, 4, 70. doi:10.3389/fcimb.2014.00070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei, W., Davis, R. E., Lee, I. M., & Zhao, Y. (2007). Computer-simulated RFLP analysis of 16S rRNA genes: Identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology, 57, 1855–1867.

    Article  CAS  PubMed  Google Scholar 

  • Weintraub, P. G., & Beanland, L. A. (2006). Insect vectors of phytoplasmas. Annual Revue of Entomology, 51, 91–111.

    Article  CAS  Google Scholar 

  • Weiss, E., & Dasch, G. A. (1991). Introduction to the Rickettsiales and other parasitic or mutualistic prokaryotes. In A. Balows, H. G. Trüper, M. Dworking, W. Harder, & K. H. Schleifer (Eds.), The prokaryotes (2nd ed., pp. 2402–2406). New York: Springer.

    Google Scholar 

  • Wilson, M. D., Boakye, D. A., Mosi, L., & Asiedu, K. (2011). In the case of transmission of Mycobacterium ulcerans in Buruli ulcer disease Acanthamoeba species stand accused. Ghana Medical Journal, 45, 31–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, X., Morano, L., Bromley, R., Spring-Pearson, S., Stouthamer, R., & Nunney, L. (2010). Multilocus sequence typing of Xylella fastidiosa causing Pierce’s disease and oleander leaf scorch in the United States. Phytopathology, 100, 601–611.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Wei, W., Davis, R. E., & Lee, I. M. (2010). Recent advances in 16S rRNA gene-based phytoplasma differentiation, classification and taxonomy. In P. G. Weintraub & P. Jones (Eds.), Phytoplasmas: Genomes, plant hosts and vectors (pp. 64–92). Wallingford: CABI.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ciancio, A. (2016). Travelling Bacteria: Vectors. In: Invertebrate Bacteriology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0884-3_5

Download citation

Publish with us

Policies and ethics