Skip to main content

The Probability of Being in Response Function and Its Applications

  • Chapter
  • First Online:
Frontiers of Biostatistical Methods and Applications in Clinical Oncology

Abstract

Cancer clinical trials usually have two or more types of related clinical events (i.e. response, progression and relapse). Hence, to compare treatments, efficacy is often measured using composite endpoints. Temkin (Biometrics 34: 571–580, [18]) proposed the probability of being in response as a function of time (PBRF) to analyze composite endpoints. The PBRF is a measure which considers the response rate and the duration of response jointly. In this article, we develop, study and propose estimators of PBRF based on multi-state survival data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barlogie B, Tricot G, Anaissie E, Shaughnessy J, Rasmussen E, van Rhee F, Fassas A, Zangari M, Hollmig K, Pineda-Roman M, Lee C, Talamo G, Thertulien R, Kiwan E, Krishna S, Fox M, Crowley J. Thalidomide and hematopoietic-cell transplantation for multiple myeloma. N Engl J Med. 2006;354(10):1021–30.

    Article  Google Scholar 

  2. Begg CB, Larson M. A study of the use of the probability-of-being-in-response function as a summary of tumor response data. Biometrics. 1982;38(1):59–66.

    Article  Google Scholar 

  3. Cox DR. Regression models and life-tables. J R Stat Soc Ser B (Methodol). 1972;34(2):187–220.

    MathSciNet  MATH  Google Scholar 

  4. Crowley J, Hu M. Covariance analysis of heart transplant survival data. J Am Stat Assoc. 1977;72(357):27–36.

    Article  Google Scholar 

  5. Ellis S, Carroll KJ, Pemberton K. Analysis of duration of response in oncology trials. Contemp Clin Trials. 2008;29(4):456–65.

    Article  Google Scholar 

  6. Gelber RD, Goldhirsch A. A new endpoint for the assessment of adjuvant therapy in postmenopausal women with operable breast cancer. J Clin Oncol. 1986;4(12):1772–9.

    Article  Google Scholar 

  7. Gelber RD, Goldhirsch A, Castiglione M, Price K, Isley M, Coates A, Ludwig Breast Cancer Study Group. Time without symptoms and toxicity (TWiST): a quality-of-life-oriented endpoint to evaluate adjuvant therapy. Adjuvant Ther Cancer. 1987;5(1):455–65.

    Google Scholar 

  8. Gelber RD, Gelman RS, Goldhirsch A. A quality-of-life-oriented endpoint for comparing therapies. Biometrics. 1989;45(3):781–95.

    Article  MATH  Google Scholar 

  9. Lagakos SW. A stochastic model for censored survival data in the presence of an auxiliary variable. Biometrics. 1976;32(3):551.

    Article  MathSciNet  MATH  Google Scholar 

  10. Lagakos SW. Using auxiliary variables for improved estimates of survival time. Biometrics. 1977;33(2):399–404.

    Article  MathSciNet  MATH  Google Scholar 

  11. Luo X, Tian H, Mohanty S, Tsai WY. An alternative approach to confidence interval estimation for the win ratio statistic. Biometrics. 2015;71(1):139–45.

    Article  MathSciNet  MATH  Google Scholar 

  12. Morgan TM. Analysis of duration of response: a problem of oncology trials. Control Clin Trials. 1988;9(1):11–8.

    Article  Google Scholar 

  13. Pepe MS. Inference for events with dependent risks in multiple endpoint studies. J Am Stat Assoc. 1991;86(415):770–8.

    Article  MathSciNet  MATH  Google Scholar 

  14. Perez CA, Pajak T, Emami B, Hornback NB, Tupchong L, Rubin P. Randomized phase III study comparing irradiation and hyperthermia with irradiation alone in superficial measurable tumors: final report by the Radiation Therapy Oncology Group. Am J Clin Oncol. 1991;14(2):133–41.

    Article  Google Scholar 

  15. Pocock SJ, Ariti CA, Collier TJ, Wang D. The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities. Eur Heart J. 2012;33(2):176–82.

    Article  Google Scholar 

  16. Tsai WY. Bivariate survival time and censoring. Unpublished Ph.D. dissertation. Madison: University of Wisconsin; 1982.

    Google Scholar 

  17. Tsai WY, Jewell NP, Wang MC. A note on the product-limit estimator under right censoring and left truncation. Biometrika. 1987;74(4):883–6.

    Article  MATH  Google Scholar 

  18. Temkin NR. An analysis for transient states with application to tumor shrinkage. Biometrics. 1978;34(4):571–80.

    Article  MATH  Google Scholar 

  19. Voelkel JG, Crowley J. Nonparametric inference for a class of semi-Markov processes with censored observations. Ann Stat. 1984;12(1):142–60.

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang MC, Jewell NP, Tsai WY. Asymptotic properties of the product limit estimate under random truncation. Ann Stat. 1986;14(4):1597–605.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yann Tsai .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Theorem 1 (Consistency)

Let the joint probability functions (pdf) of (T 0, X 0) be f(t, x). Define the two sub-marginal functions f 1(t) and f 2(x), respectively, as

$$ f_{1} (t) = \int\limits_{0}^{t} {f(t,x)dx} $$

and

$$ f_{2} (x) = \int\limits_{x}^{\infty } {f(t,x)dt} . $$

Using the method which is similar to Tsai et al. [17], we may prove that \( \tilde{S}_{T} (t) \) converges almost surly to

$$ S_{T}^{*} (t) = \exp \left\{ { - \int\limits_{0}^{t} {\frac{{f_{1} (s)S_{C} (s)}}{{R_{o} (s)}}ds} } \right\} = \exp \left\{ { - \int\limits_{0}^{t} {\frac{{f_{1} (s)}}{R(s)}ds} } \right\}. $$

The Kaplan–Meier estimator \( \hat{S}_{Y} (x) \) will converges almost surely to \( S_{Y} (x) \). Combining these and the properties of empirical cumulative distribution function, we can show that \( \hat{R}_{3} (t) \) will converge almost surely to

$$ R_{3} (t) = S_{T}^{*} (t)\int\limits_{0}^{t} {\frac{{f_{2} (x)}}{{S_{T}^{*} (x)}}} dx. $$

However, one may easily verify that

$$ \left( {\frac{R(t)}{{S_{T}^{*} (t)}}} \right)^{{\prime }} = \frac{{f_{2} (t)}}{{S_{T}^{*} (t)}}, $$

which implies that

$$ R(t) = S_{T}^{*} (t)\int\limits_{0}^{t} {\frac{{f_{2} (x)}}{{S_{T}^{*} (x)}}} dx $$

and the consistency result follows.

Proof of Theorem 2 (Asymptotic Normality)

By Taylor expansion,

$$ \sqrt n \left( {\hat{R}_{3} (t) - R(t)} \right) = \sqrt n A_{1} (t) + \sqrt n A_{2} (t) + \sqrt n A_{3} (t) + o_{p} (1), $$

where \( A_{1} (t) = n^{ - 1} \sum\nolimits_{i = 1}^{n} e_{31i} (t),A_{2} (t) = n^{ - 1} \sum\nolimits_{i = 1}^{n} e_{32i} (t),A_{3} (t) = n^{ - 1} \sum\nolimits_{i = 1}^{n} e_{33i} (t) \) and for \( i = 1, \ldots ,n \)

$$ \begin{aligned} e_{31i} (t) = & \frac{{\delta_{Xi} I\left( {X_{i} \le t} \right)S_{T}^{*} (t)}}{{S_{T}^{*} \left( {X_{i} } \right)S_{C} \left( {X_{i} } \right)}} - R(t), \\ e_{32i} (t) = & \frac{{\delta_{Xi} \delta_{Ti} I\left( {T_{i} \le t} \right)S_{T}^{*} (t)R_{3} \left( {T_{i} } \right)}}{{S_{T}^{*} \left( {T_{i} } \right)r_{o}^{e} \left( {T_{i} } \right)}} - \int\limits_{0}^{t} {\frac{{S_{T}^{*} (t)R(s)I\left( {X_{i} \le s \le T_{i} } \right)f_{11} (s)ds}}{{S_{T}^{*} (s)\left[ {r_{o}^{e} (s)} \right]^{2} }}} \\ e_{33i} (t) = & \frac{{S_{T}^{*} (t)}}{{n_{T} (T_{i} )}}\left\{ {\frac{R(t)}{{S_{T}^{*} (t)}} - \frac{{R_{3} \left( {T_{i} } \right)}}{{S_{T}^{*} \left( {T_{i} } \right)}}} \right\}I\left( {\delta_{Ti} = 0,T_{i} \le t} \right) \\ & \quad - \int\limits_{0}^{t} {\frac{{S_{T}^{*} (t)}}{{n_{T}^{2} (s)}}\left\{ {\frac{R(t)}{{S_{T}^{*} (t)}} - \frac{R(s)}{{S_{T}^{*} (s)}}} \right\}f_{2} (s)ds} \\ n_{T} (t) = & E\{ N_{T} (t)\} /n \\ f_{11} (s) = & {\text{pr}}(X \le T = s,\delta_{X} = 1,\delta_{T} = 1) \\ f_{2} (s) = & {\text{pr}}(T = s,\delta_{T} = 0) \\ \end{aligned} $$

Since \( A_{j} (t),\;j = 1,2,3 \) are all sum of i.i.d. random variables, \( A_{1} (t) + A_{2} (t) + A_{3} (t) \) will converge to a mean zero Gaussian process \( \Re_{3} \left( t \right) \) as \( n \to \infty \) with the variance covariance matrix \( Cov\left( {\Re_{3} (s),\Re_{3} (t)} \right) \) that can be consistently estimated by

$$ n^{ - 1} \sum\limits_{i = 1}^{n} {\left[ {\hat{e}_{31i} (s) - \hat{e}_{32i} (s) + \hat{e}_{33i} (s)} \right]\left[ {\hat{e}_{31i} (t) - \hat{e}_{32i} (t) + \hat{e}_{33i} (t)} \right],} $$

where \( \hat{e}_{3ji} (t) \) is the estimate of the \( e_{3ji} \left( t \right) \) when the unknown functions are substituted by their estimates, \( j = 1,2,3 \).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tsai, W.Y., Luo, X., Crowley, J. (2017). The Probability of Being in Response Function and Its Applications. In: Matsui, S., Crowley, J. (eds) Frontiers of Biostatistical Methods and Applications in Clinical Oncology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0126-0_10

Download citation

Publish with us

Policies and ethics