Skip to main content

Changes in the Inner Gene Expression of Lateral Olivocochlear Receptors After the Loss of the Descending Cortical Pathway

  • Conference paper
  • First Online:
Advances in Cognitive Neurodynamics (V)

Part of the book series: Advances in Cognitive Neurodynamics ((ICCN))

  • 1517 Accesses

Abstract

Almost all experimental paradigms in which sound stimulation is involved assume the stability along time of central sensorineural processing. However, several recent studies demonstrate that brain cortex dynamically regulates the receptor analysis of sound. We are interested in how the descending cortical control regulates, in the long term, molecular markers of the inner ear function. It has been shown that the auditory cortex sends a long connection to medial olivocochlear neurons (MOC) located in the pons. These neurons dynamically regulate the amplification and gain control of the organ of Corti and the cochlear nerve. After sound stimulation MOC connections to the cochlea regulate OHC motility and in consequence the mechanism for transduction in the Organ of Corti. Recent behavioral studies have shown that cortical control modifies the response of the ear in sound localization and selective attention, raising the relevance of knowing more about the fundamentals of the feedback regulation of neural plasticity. In this paper, we analyze the effects of cortical deprivation on the expression of some relevant molecular markers of the inner ear related to the olivocochlear regulation in an attempt to understand the cellular basis for plastic descending regulation of hearing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suga, N., Xiao, Z., Ma, X., Ji, W.: Plasticity and corticofugal modulation for hearing in adult animals. Neuron 36(1), 9–18 (2002)

    Article  PubMed  CAS  Google Scholar 

  2. Yan, J., Zhang, Y., Ehret, G.: Corticofugal shaping of frequency tuning curves in the central nucleus of the inferior colliculus of mice. J. Neurophysiol. 93(1), 71–83 (2005). doi:10.1152/jn.00348.2004

    Article  PubMed  Google Scholar 

  3. Liu, X., Yan, Y., Wang, Y., Yan, J.: Corticofugal modulation of initial neural processing of sound information from the ipsilateral ear in the mouse. PLoS ONE 5(11), e14038 (2010). doi:10.1371/journal.pone.0014038

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Luo, F., Wang, Q., Kashani, A., Yan, J.: Corticofugal modulation of initial sound processing in the brain. J. Neurosci. 28(45), 11615–11621 (2008). doi:10.1523/JNEUROSCI.3972-08.2008

    Article  PubMed  CAS  Google Scholar 

  5. Bajo, V.M., Nodal, F.R., Moore, D.R., King, A.J.: The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nat. Neurosci. 13(2), 253–260 (2010). doi:10.1038/nn.2466

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Bajo, V.M., Nodal, F.R., Moore, D.R., King, A.J.: The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nat. Neurosci. 13(2), 253–260 (2013). doi:10.1038/nn.2466

    Article  Google Scholar 

  7. Delano, P.H., Elgueda, D., Hamame, C.M., Robles, L.: Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas. J. Neurosci. 27, 4146–4153 (2007). doi:10.1523/JNEUROSCI.3702-06.2007

    Article  PubMed  CAS  Google Scholar 

  8. Malmierca, M.S, Ryugo, D.K.: Descending connections of auditory cortex to the midbrain and brain stem. In: The Auditory Cortex, pp. 189–208. (2011) doi:10.1007/978-1-4419-0074-6

    Google Scholar 

  9. Bajo, V.M., Moore, D.R.: Descending projections from the auditory cortex to the inferior colliculus in the gerbil, Meriones unguiculatus. J. Comp Neurol. 486, 101–116 (2005). doi:10.1002/cne.20542

    Article  PubMed  Google Scholar 

  10. Malmierca, M.S., Le, Beau F.E., Rees, A.: The topographical organization of descending projections from the central nucleus of the inferior colliculus in guinea pig. Hear. Res. 93(1–2), 167–180 (1996)

    Article  PubMed  CAS  Google Scholar 

  11. Winer, J.A., Diehl, J.J., Larue, D.T.: Projections of auditory cortex to the medial geniculate body of the cat. J. Comp. Neurol 430(1), 27–55 (2001)

    Article  PubMed  CAS  Google Scholar 

  12. Thompson, A.M., Schofield, B.R.: Afferent projections of the superior olivary complex. Microsc. Res. Tech 51(4), 330–354 (2000)

    Article  PubMed  CAS  Google Scholar 

  13. Winer, J.A., Lee, C.C.: The distributed auditory cortex. Hear. Res. 229(1–2), 3–13 (2007). doi:10.1016/j.heares.2007.01.017

    Article  PubMed  PubMed Central  Google Scholar 

  14. Galambos, R.: Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J. Neurophysiol. 19(5), 424–437 (1956)

    PubMed  CAS  Google Scholar 

  15. Warr, W.B., Guinan, J.J.: Efferent innervation of the organ of corti: two separate systems. Brain Res. 173(1), 152–155 (1979)

    Article  PubMed  CAS  Google Scholar 

  16. León, A., Elgueda, D., Silva, M.A., Hamamé, C.M., Delano, P.H.: Auditory cortex basal activity modulates cochlear responses in chinchillas. PLoS ONE 7(4), e36203 (2012). doi:10.1371/journal.pone.0036203

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lamas, V., Alvarado, J.C., Carro, J., Merchán, M.A.: Long-term evolution of brainstem electrical evoked responses to sound after restricted ablation of the auditory cortex. PLoS ONE 8(9), e73585 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. He, D.Z.Z., Lovas, S., Ai, Y., Li, Y., Beisel, K.W.: Prestin at year 14: progress and prospect. Hear. Res. 1–11. (2013). doi:10.1016/j.heares.2013.12.002

    Google Scholar 

  19. Lamas, V., Arévalo, J.C., Juiz, J.M., Merchán, M.A.: Acoustic input and efferent activity regulate the expression of molecules involved in cochlear micromechanics. Front. Syst. Neurosci. 8:1–8 (2015)

    Google Scholar 

  20. Schmittgen, T.D., Livak, K.J.: Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3(6), 1101–1108 (2008)

    Article  PubMed  CAS  Google Scholar 

  21. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4), 402–408 (2001). doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  22. Morley, B.J., Li, H.S., Hiel, H., Drescher, D.G., Elgoyhen, A.B.: Identification of the subunits of the nicotinic cholinergic receptors in the rat cochlea using RT-PCR and in situ hybridization. Brain Res. Mol. Brain Res. 53(1–2), 78–87 (1998)

    Article  PubMed  CAS  Google Scholar 

  23. Maison, S.F., Liu, X.-P., Eatock, R.A., Sibley, D.R., Grandy, D.K., Liberman, M.C.: Dopaminergic signaling in the cochlea: receptor expression patterns and deletion phenotypes. J. Neurosci. 32(1), 344–355 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Warr, W.B.: Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J. Comp. Neurol. 161, 159–181 (1975). doi:10.1002/cne.901610203

    Article  PubMed  CAS  Google Scholar 

  25. Eybalin, M., Pujol, R.: Choline acetyltransferase (ChAT) immunoelectron microscopy distinguishes at least three types of efferent synapses in the organ of Corti. Exp. Brain Res. 65, 261–270 (1987). doi:10.1007/BF00236298

    Article  PubMed  CAS  Google Scholar 

  26. Vetter, D.E., Adams, J.C., Mugnaini, E.: Chemically distinct rat olivocochlear neurons. Synapse 7(1), 21–43 (1991). doi:10.1002/syn.890070104

    Article  PubMed  CAS  Google Scholar 

  27. Felix, D., Ehrenberger, K.: The efferent modulation of mammalian inner hair cell afferents. Hear. Res. 64(1), 1–5 (1992)

    Article  PubMed  CAS  Google Scholar 

  28. Feliciano, M., Potashner, S.J.: Evidence for a glutamatergic pathway from the guinea pig auditory cortex to the inferior colliculus. J. Neurochem. 65(3), 1348–1357 (1995). doi:10.1046/j.1471-4159.1995.65031348.x

    Article  PubMed  CAS  Google Scholar 

  29. Coomes, D.L., Schofield, B.R.: Projections from the auditory cortex to the superior olivary complex in guinea pigs. Eur. J. Neurosci. 19, 2188–2200 (2004)

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Ministry of Economy and Competitiveness of the Government of Spain, BFU2012-39982-C01 and C02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Merchan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Merchan, M.A., Lamas, V., Juiz, J.M. (2016). Changes in the Inner Gene Expression of Lateral Olivocochlear Receptors After the Loss of the Descending Cortical Pathway. In: Wang, R., Pan, X. (eds) Advances in Cognitive Neurodynamics (V). Advances in Cognitive Neurodynamics. Springer, Singapore. https://doi.org/10.1007/978-981-10-0207-6_16

Download citation

Publish with us

Policies and ethics