Skip to main content

Quantum Virial Coefficients via Path Integral Monte Carlo with Semi-classical Beads

  • Chapter
  • First Online:
Foundations of Molecular Modeling and Simulation

Abstract

Conventionally, Path Integral Monte Carlo (PIMC) calculations are performed with ‘classical beads’ (beads interacting via a classical potential) by using the primitive approximation for the thermal density matrix. Higher order propagators of the thermal density matrix have been proven to achieve faster convergence and better precision in quantum calculations than using just the primitive approximation. Use of different propagators in PIMC leads to methods equivalent to performing PIMC with ‘semi-classical beads’ (beads interacting via a semi-classical potential). We examine the Takahashi-Imada (TI) propagator as well as an ad hoc semi-classical potential in PIMC calculations for computing the quantum second virial coefficient for helium-4. We compare the performance of the two approaches based on semi-classical beads against values computed from PIMC using conventional classical beads. We find that while the TI propagator has the same or marginally better precision compared to the classical case, it has the best convergence rate (with respect to number of path-integral beads) among the three approaches. The convergence rate of the ad hoc potential is marginally better than its classical counterpart, and its precision is approximately the same as the classical case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals, 1st edn. McGraw-Hill Companies, Inc., New York (1965). Emended by Daniel F. Styer

    Google Scholar 

  2. Ceperley, D.: Path integrals in the theory of condensed helium. Rev. Mod. Phys. 67, 279 (1995)

    Article  CAS  Google Scholar 

  3. Cui, T., Cheng, E., Alder, B., Whaley, K.: Rotational ordering in solid deuterium and hydrogen: a path integral Monte Carlo study. Phys. Rev. B 55, 12253 (1997)

    Article  CAS  Google Scholar 

  4. Takahashi, M., Imada, M.: Monte Carlo calculation of quantum systems. II. higher order correction. J. Phys. Soc. Jpn. 53, 3765–3769 (1984)

    Article  CAS  Google Scholar 

  5. Schenter, G.K.: The development of effective classical potentials and the quantum statistical mechanical second virial coefficient of water. J. Chem. Phys. 117, 6573 (2002)

    Article  CAS  Google Scholar 

  6. Janke, W., Sauer, T.: Properties of higher-order Trotter formulas. Phys. Lett. A 165, 199–205 (1992)

    Article  Google Scholar 

  7. Suzuki, M.: Hybrid exponential product formulas for unbounded operators with possible applications to Monte Carlo simulations. Phys. Lett. A 201, 425–428 (1995)

    Article  CAS  Google Scholar 

  8. Yamamoto, T.M.: Path-integral virial estimator based on the scaling of fluctuation coordinates: application to quantum clusters with fourth-order propagators. J. Chem. Phys. 123, 104101 (2005)

    Article  Google Scholar 

  9. Garberoglio, G., Harvey, A.H.: First-principles calculation of the third virial coefficient of helium. J. Res. Natl. Inst. Stand. Technol. 114, 249 (2009)

    Article  CAS  Google Scholar 

  10. Fellmuth, B., Gaiser, C., Fischer, J.: Determination of the Boltzmann constant—status and prospects. Meas. Sci. Technol. 17, R145–R159 (2006)

    Article  CAS  Google Scholar 

  11. Schmidt, J.W., Gavioso, R.M., May, E.F., Moldover, M.R.: Polarizability of helium and gas metrology. Phys. Rev. Lett. 98, 254504 (2007)

    Article  CAS  Google Scholar 

  12. Pitre, L., Moldover, M.R., Tew, W.L.: Acoustic thermometry: new results from 273 K to 77 K and progress towards 4K. Metrologia 43, 142–162 (2006)

    Article  Google Scholar 

  13. Moldover, M.R., McLinden, M.O.: Using ab initio data to accurately determine the fourth density virial coefficient of helium. J. Chem. Thermodyn. 42, 1193–1203 (2010)

    Article  CAS  Google Scholar 

  14. Aziz, R.A., Janzen, A.R., Moldover, M.R.: Ab initio calculations for helium: a standard for transport property measurements. Phys. Rev. Lett. 74, 1586–1589 (1995)

    Article  CAS  Google Scholar 

  15. Shaul, K.R.S., Schultz, A.J., Kofke, D.A., Moldover, M.R.: Semiclassical fifth virial coefficients for improved ab initio helium-4 standards. Chem. Phys. Lett. 531, 11–17 (2012)

    Article  CAS  Google Scholar 

  16. Garberoglio, G., Harvey, A.H.: Path-integral calculation of the third virial coefficient of quantum gases at low temperatures. J. Chem. Phys. 134, 134106 (2011)

    Article  Google Scholar 

  17. Garberoglio, G., Moldover, M.R., Harvey, A.H.: Improved first-principles calculation of the third virial coefficient of helium. J. Res. Natl. Inst. Stand. Technol. 116, 729–742 (2011)

    Article  CAS  Google Scholar 

  18. Shaul, K.R., Schultz, A.J., Kofke, D.A.: Path-integral Mayer-sampling calculations of the quantum Boltzmann contribution to virial coefficients of helium-4. J. Chem. Phys. 137, 184101 (2012)

    Article  Google Scholar 

  19. Tester, J.W., Modell, M.: Thermodynamics and Its applications, 3rd edn. Prentice Hall Inc, New Jersey (1997)

    Google Scholar 

  20. Masters, A.J.: Virial expansions. J. Phys.: Condens. Matter 20, 283102 (2008)

    Google Scholar 

  21. Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids, 3rd edn. Academic Press (2006)

    Google Scholar 

  22. Przybytek, M., Cencek, W., Komasa, J., Łach, G., Jeziorski, B., Szalewicz, K.: Relativistic and quantum electrodynamics effects in the helium pair potential. Phys. Rev. Lett. 104, 183003 (2010)

    Article  CAS  Google Scholar 

  23. Singh, J.K., Kofke, D.A.: Mayer sampling: calculation of cluster integrals using free-energy perturbation methods. Phys. Rev. Lett. 92, 220601 (2004)

    Article  Google Scholar 

  24. Schultz, A.J., Kofke, D.A.: Sixth, seventh and eighth virial coefficients of the Lennard-Jones model. Mol. Phys. 107, 2309 (2009)

    Article  CAS  Google Scholar 

  25. Percus, J.K., Yevick, G.J.: Analysis of classical statistical mechanics by means of collective coordinates. Phys. Rev. 110, 1–13 (1958)

    Article  CAS  Google Scholar 

  26. Shaul, K.R.S., Schultz, A.J., Perera, A., Kofke, D.A.: Integral-equation theories and Mayer-sampling Monte Carlo: a tandem approach for computing virial coefficients of simple fluids. Mol. Phys. 109, 2395–2406 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the U.S. National Science Foundation (CHE-1027963).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Kofke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Subramanian, R., Schultz, A.J., Kofke, D.A. (2016). Quantum Virial Coefficients via Path Integral Monte Carlo with Semi-classical Beads. In: Snurr, R., Adjiman, C., Kofke, D. (eds) Foundations of Molecular Modeling and Simulation. Molecular Modeling and Simulation. Springer, Singapore. https://doi.org/10.1007/978-981-10-1128-3_6

Download citation

Publish with us

Policies and ethics