Skip to main content

Abstract

Currently, several research laboratories are developing genetically modified bananas and plantains for different purposes, while new transgenic crops are being developed and released in several countries. Therefore, a more regulated transgene expression is needed. Furthermore, native banana promoters should imply a more public acceptance than heterologous sequences. Promoter isolation could be performed by an insertional mutagenesis approach or indirectly by analyzing expression patterns of related genes. Advances in genomics led to the genome sequencing and gene annotation of banana, as a source to identify candidate promoters for specific expression patterns. The challenge in computational approaches for promoter characterization is to precisely identify pattern of expression. Actually, promoter analysis for activity characterization has been confirmed through experimentation with different techniques, including reporter genes, bioinformatics analysis for candidate cis-acting element and promoter prediction, and expression analysis of related genes. A review of characterization of different banana promoters is summarized, and the analysis of available banana promoter sequences in the GenBank was performed with available bioinformatics tools and a novel method to identify motif sequences. Furthermore, a list of promoters used in the development of genetically modified banana is presented, indicating an increase of plant and native banana promoters used to drive expression of related gene in a specific pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.cera-gmc.org/GMCropDatabase

  2. 2.

    www.isaaa.org/

  3. 3.

    www.softberry.com/berry.phtml?topic=plantprom&group=data&subgroup=plantprom

  4. 4.

    http://www.softberry.com/berry.phtml?topic=plantprom&group=data&subgroup=plantprom

References

  • André D, Colau D, Schell J, Montagu M, Hernalsteens JP (1986) Gene tagging in plants by a T-DNA insertion mutagen that generates APH(3′)II-plant gene fusions. Mol Gen Genet 204:512–518

    Article  Google Scholar 

  • Asif M, Lakhwani D, Pathak S et al (2014) Genome-wide identification and expression analysis of the mitogen-activated protein kinase gene family from banana suggest involvement of specific members in different stages of fruit ripening. Funct Integr Genomics 14(1):161–175. doi:10.1007/s10142-013-0349-9

    Article  CAS  PubMed  Google Scholar 

  • Atkinson HJ, Grimwood S, Johnston K, Green J (2004) Prototype demonstration of transgenic resistance to the nematode Radopholus similis conferred on banana by a cystatin. Transgenic Res 13:135–142

    Article  CAS  PubMed  Google Scholar 

  • Ba L, Shan W, Kuang J et al (2014a) The banana MaLBD (lateral organ boundaries domain) transcription factors regulate EXPANSIN expression and are involved in fruit ripening. Plant Mol Biol Report 32(6):1103–1113. doi:10.1007/s11105-014-0720-6

    Article  CAS  Google Scholar 

  • Ba L, Shan W, Xiao Y et al (2014b) A ripening-induced transcription factor MaBSD1 interacts with promoters of MaEXP1/2 from banana fruit. Plant Cell Rep 33(11):1913–1920. doi:10.1007/s00299-014-1668-6

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berk AJ (1999) Activation of RNA polymerase II transcription. Curr Opin Cell Biol 11:330–335

    Article  CAS  PubMed  Google Scholar 

  • Breathnach R, Chambon P (1981) Organization and expression of eukaryotic split genes-coding for proteins. Annu Rev Biochem 50:349–383

    Article  CAS  PubMed  Google Scholar 

  • Calderon-Villalobos LIA, Kuhnle C, Li HB, Rosso M, Weisshaar B, Schwechheimer C (2006) LucTrap vectors are tools to generate luciferase fusions for the quantification of transcript and protein abundance in vivo. Plant Physiol 141:3–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castle J, Szekeres M, Jenkins G, Bishop GJ (2005) Unique and overlapping expression patterns of Arabidopsis CYP85 genes involved in brassinosteroid C-6 oxidation. Plant Mol Biol 57:129–140

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA (2003) MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596

    CAS  PubMed  Google Scholar 

  • Chiu WL, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  CAS  PubMed  Google Scholar 

  • Chong-Pérez B, Kosky RG, Reyes M et al (2012) Heat shock induced excision of selectable marker genes in transgenic banana by the Cre-lox site-specific recombination system. J Biotechnol 159(4):265–273. doi:10.1016/j.jbiotec.2011.07.031

    Article  PubMed  CAS  Google Scholar 

  • Chong-Pérez B, Reyes M, Rojas L, Ocaña B et al (2013) Excision of a selectable marker gene in transgenic banana using a Cre/lox system controlled by an embryo specific promoter. Plant Mol Biol 83:143–152. doi:10.1007/s11103-013-0058-8

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  CAS  PubMed  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Droc G, Lariviere D, Guignon V et al (2013) The banana genome hub. Database 2013:bat035. doi:10.1093/database/bat035

  • Dugdale B, Beetham PR, Becker DK, Harding RM, Dale JL (1998) Promoter activity associated with the intergenic regions of banana bunchy top virus DNA-1 to-6 in transgenic tobacco and banana cells. J Gen Virol 79:2301–2311

    Article  CAS  PubMed  Google Scholar 

  • Dugdale B, Becker DK, Harding RM, Dale JL (2001) Intron-mediated enhancement of the banana bunchy top virus DNA-6 promoter in banana (Musa spp.) embryogenic cells and plants. Plant Cell Rep 20:220–226

    Article  CAS  Google Scholar 

  • Dynan WS (1986) Promoters for housekeeping genes. Trends Genet 2:196–197

    Article  CAS  Google Scholar 

  • Elliott AR, Campbell JA, Dugdale B, Brettell RIS, Grof CPL (1999) Green fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells. Plant Cell Rep 18:707–714

    Article  CAS  Google Scholar 

  • Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1:71–82

    Article  CAS  Google Scholar 

  • Fobert PR, Miki BL, Iyer VN (1991) Detection of gene regulatory signals in plants revealed by T-DNA-mediated fusions. Plant Mol Biol 17:837–851

    Article  CAS  PubMed  Google Scholar 

  • Fobert PR, Labbe H, Cosmopoulos J et al (1994) T-DNA tagging of a seed coat-specific cryptic promoter in tobacco. Plant J 6:567–577

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Shekhawat U, Ganapathi T et al (2012) Analysis of banana fruit-specific promoters using transient expression in embryogenic cells of banana cultivar Robusta (AAA Group). J Plant Biochem Biotechnol 21(2):189–197. doi:10.1007/s13562-011-0070-5

    Article  CAS  Google Scholar 

  • Halfon MS (2006) (Re)modeling the transcriptional enhancer. Nat Genet 38:1102–1103

    Article  CAS  PubMed  Google Scholar 

  • He S, Shan W, Kuang J et al (2013) Molecular characterization of a stress-response bZIP transcription factor in banana. Plant Cell Tiss Org Cult 113(2):173–187. doi:10.1007/s11240-012-0258-y

    Article  CAS  Google Scholar 

  • Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373:663–664

    Article  CAS  PubMed  Google Scholar 

  • Hermann SR, Harding RM, Dale JL (2001) The banana actin 1 promoter drives near-constitutive transgene expression in vegetative tissues of banana (Musa spp.). Plant Cell Rep 20:525–530

    Article  CAS  Google Scholar 

  • Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hraska M, Rakousky S, Curn V (2006) Green fluorescent protein as a vital marker for non-destructive detection of transformation events in transgenic plants. Plant Cell Tiss Org Cult 86:303–318

    Article  CAS  Google Scholar 

  • Janssens H, Hou SL, Jaeger J et al (2006) Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene. Nat Genet 38:1159–1165

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan CI, Jordan CJ (2015) MBMEDA: an application of estimation of distribution algorithms to the problem of finding biological motifs. Lecture notes in computer science. Artificial computation in biology and medicine, vol 9107. Springer International Publishing, Cham, pp 39–46

    Google Scholar 

  • Kankainen M, Holm L (2005) POCO: discovery of regulatory patterns from promoters of oppositely expressed gene sets. Nucleic Acids Res 33(Web Server issue):W427–W431

    Google Scholar 

  • Kertbundit S, De Greve H, Deboeck F, Van Montagu M, Hernalsteens JP (1991) In vivo random β-glucuronidase gene fusions in Arabidopsis thaliana. Proc Natl Acad Sci U S A 88:5212–5216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koncz C, Martini N, Mayerhofer R et al (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci U S A 86:8467–8471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristiansson E, Thorsen M, Tamás MJ, Nerman O (2009) Evolutionary forces act on promoter length: identification of enriched Cis-regulatory elements. Mol Biol Evol 26(6):1299–1307. doi:10.1093/molbev/msp040

    Article  CAS  PubMed  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuang J, Chen L, Shan W et al (2013) Molecular characterization of two banana ethylene signaling component MaEBFs during fruit ripening. Postharvest Biol Technol 85:94–101. doi:10.1016/j.postharvbio.2013.05.004

    Article  CAS  Google Scholar 

  • Kumari S, Ware D (2013) Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots. PLoS One 8(10):e79011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutach AK, Kadonaga JT (2000) The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol Cell Biol 20:4754–4764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TI, Young RA (2000) Transcription of eukaryotic protein-coding genes. Annu Rev Genet 34:77–137

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Dehais P, Thijs G et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Brutlag DL, Liu JS (2001) Bioprospector: discovering conserved DNa motifs in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput 6:127–138

    Google Scholar 

  • Liu J, Liu L, Li Y et al (2015) Role for the banana AGAMOUS-like gene MaMADS7 in regulation of fruit ripening and quality. Physiol Plant 155(3):217–231

    Article  CAS  PubMed  Google Scholar 

  • Mandal A, Sandgren M, Holmstrom KO, Gallois P, Palva ET (1995) Identification of Arabidopsis thaliana sequences responsive to low temperature and abscisic acid by T-DNA tagging and in-vivo gene fusion. Plant Mol Biol Report 13:243–254

    Article  CAS  Google Scholar 

  • Marilley M, Pasero P (1996) Common DNA structural features exhibited by eukaryotic ribosomal gene promoters. Nucleic Acids Res 24:2204–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martienssen RA (1998) Functional genomics: probing plant gene function and expression with transposons. Proc Natl Acad Sci U S A 95:2021–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama K, Todaka D, Mizoi J et al (2012) Identification of Cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19(1):37–49. doi:10.1093/dnares/dsr040

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Morais LS, Vianna GR, Aragão FJL, Rech EL (2002) Genetic transformation of banana embryogenic cells through particle bombardment using a herbicide resistance gene as selectable marker. Acta Horticult 575:61–67

    Article  CAS  Google Scholar 

  • Maximova SN, Dandekar AM, Guiltinan MJ (1998) Investigation of Agrobacterium-mediated transformation of apple using green fluorescent protein: high transient expression and low stable transformation suggest that factors other than T-DNA transfer are rate-limiting. Plant Mol Biol 37:549–559

    Article  CAS  PubMed  Google Scholar 

  • May GD, Afza R, Mason HS et al (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Biotechnology 13:486–492

    Article  CAS  Google Scholar 

  • Mellor J (2006) Dynamic nucleosomes and gene transcription. Trends Genet 22:320–329

    Article  CAS  PubMed  Google Scholar 

  • Mollier P, Hoffmann B, Orsel M, Pelletier G (2000) Tagging of a cryptic promoter that confers root-specific gus expression in Arabidopsis thaliana. Plant Cell Rep 19:1076–1083

    Article  CAS  Google Scholar 

  • Mudge SR, Birch RG (1998) T-DNA tagging and characterisation of a novel meristem-specific promoter from tobacco. Aust J Plant Physiol 25:637–643

    Article  CAS  Google Scholar 

  • Nakamura M, Tsunoda T, Obokata J (2002) Photosynthesis nuclear genes generally lack TATA-boxes: a tobacco photosystem I gene responds to light through an initiator. Plant J 29:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ökrész L, Mathe C, Horvath E et al (1998) T-DNA trapping of a cryptic promoter identifies an ortholog of highly conserved SNZ growth arrest response genes in Arabidopsis. Plant Sci 138:217–228

    Article  Google Scholar 

  • Ow DW, Wood KW, DeLuca M et al (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants and transgenic plants. Science 234:856–859

    Article  CAS  PubMed  Google Scholar 

  • Pandey SP, Krishnamachari A (2006) Computational analysis of plant RNA Pol-II promoters. Biosystems 83:38–50

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Shan W, Kuang J et al (2013) Molecular characterization of cold-responsive basic helix-loop-helix transcription factors MabHLHs that interact with MaICE1 in banana fruit. Planta 238(5):937–953. doi:10.1007/s00425-013-1944-7

    Article  CAS  PubMed  Google Scholar 

  • Plesch G, Kamann E, Mueller-Roeber B (2000) Cloning of regulatory sequences mediating guard-cell-specific gene expression. Gene 249:83–89

    Article  CAS  PubMed  Google Scholar 

  • Praz V, Perier R, Bonnard C, Bucher P (2002) The eukaryotic promoter database, EPD: new entry types and links to gene expression data. Nucleic Acids Res 30:322–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radhamony RN, Prasad AM, Srinivasan R (2005) T-DNA insertional mutagenesis in Arabidopsis: a tool for functional genomics. Electron J Biotechnol 8:82–106

    CAS  Google Scholar 

  • Remy S (2000) Genetic transformation of banana (Musa spp.) for disease resistance by expression of antimicrobial proteins. Dissertationes de agricultura. Ph.D. thesis 420.KatholiekeUniversiteit Leuven, Belgium. Faculteit Bio-ingenieurswetenschappen. 341 p

    Google Scholar 

  • Remy S, Buyens A, Cammue BPA, Swennen R, Sági L (1998) Production of transgenic banana plants expressing antifungal proteins. Acta Horticult 490:433–436

    Article  CAS  Google Scholar 

  • Remy S, De Weerdt G, Deconinck I, Swennen R, Sági L (2004) An ultrasensitive luminescent detection system in banana biotechnology: from promoter tagging to southern hybridization. In: Mohan Jain S, Swennen R (eds) Banana improvement: cellular, molecular biology, and induced mutations. Science Publishers, Enfield, pp 307–319

    Google Scholar 

  • Remy S, Thiry E, Coemans B et al (2005) Improved T-DNA vector for tagging plant promoters via high-throughput luciferase screening. Biotechniques 38:763–770

    Article  CAS  PubMed  Google Scholar 

  • Rombauts S, Florquin K, Lescot M et al (2003) Computational approaches to identify promoters and cis-regulatory elements in plant genomes. Plant Physiol 132:1162–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy Choudhury S, Roy S, Das R, Sengupta DN (2008a) Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter. Planta 229:207–223. doi:10.1007/s00425-008-0821-2

    Article  CAS  PubMed  Google Scholar 

  • Roy Choudhury S, Roy S, ParamitaSaha P, Kumar Singh S, Sengupta DN (2008b) Characterization of differential ripening pattern in association with ethylene biosynthesis in the fruits of five naturally occurring banana cultivars and detection of a GCC-box-specific DNA-binding protein. Plant Cell Rep 27:1235–1249. doi:10.1007/s00299-008-0547-4

    Article  CAS  Google Scholar 

  • Roy Choudhury S, Roy S, Sengupta DN (2009) A comparative study of cultivar differences in sucrose phosphate synthase gene expression and sucrose formation during banana fruit ripening. Postharvest Biol Technol 54(1):15–24. doi:10.1016/j.postharvbio.2009.05.003

    Article  CAS  Google Scholar 

  • Roy Choudhury S, Roy S, Singh S, Sengupta D (2010) Understanding the molecular mechanism of transcriptional regulation of banana Sucrose phosphate synthase (SPS) gene during fruit ripening: an insight into the functions of various cis-acting regulatory elements. Plant Signal Behav 5(5):553–557. doi:10.4161/psb.11092

    Article  Google Scholar 

  • Roy Choudhury S, Roy S, Singh K, Sengupta DN (2011) Ma-ACS1: a key operator in ethylene biosynthesis in banana – its role and regulation during fruit ripening. Acta Horticult 897:187–194

    Article  Google Scholar 

  • Sági L, Remy S, Panis B, Volckaert G, Swennen R (1992) Transient gene expression in banana protoplasts. Banana Newslett 15:42

    Google Scholar 

  • Sági L, Panis B, Remy S et al (1995) Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Biotechnology 13:481–485

    Article  PubMed  Google Scholar 

  • Santos Ordóñez EG (2008) Characterization and isolation of T-DNA tagged banana promoters active during in vitro regeneration and low temperature stress. Dissertationes de agricultura. Ph.D. thesis 787.KatholiekeUniversiteit Leuven, Belgium. Faculteit Bio-Ingenieurswetenschappen, 188 p

    Google Scholar 

  • Santos E, Remy R, Thiry E et al (2009) Characterization and isolation of a T-DNA tagged banana promoter active during in vitro culture and low temperature stress. BMC Plant Biol 9:77. doi:10.1186/1471-2229-9-77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schatz T, Langowski J (1997) Curvature and sequence analysis of eukaryotic promoters. J Biomol Struct Dyn 15:265–275

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Sági L, Remans T et al (1999) A promoter from sugarcane bacilliform badnavirus drives transgene expression in banana and other monocot and dicot plants. Plant Mol Biol 39:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Remans T, Sági L et al (2001) Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol Biol 47:399–412

    Article  CAS  PubMed  Google Scholar 

  • Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki M, Narusaka M, Kamiya A et al (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296:141–145

    Article  PubMed  Google Scholar 

  • Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31:114–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahmuradov IA, Solovyev VV, Gammerman AJ (2005) Plant promoter prediction with confidence estimation. Nucleic Acids Res 33:1069–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan W, Kuang J, Chen L et al (2012) Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening. J Exp Bot 63(14):5171–5187. doi:10.1093/jxb/ers178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan W, Kuang J, Lu W et al (2014) Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1. Plant Cell Environ 37(9):2116–2127. doi:10.1111/pce.12303

    Article  CAS  PubMed  Google Scholar 

  • Shekhawat U, Srinivas L, Ganapathi T (2011) MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234(5):915–932. doi:10.1007/s00425-011-1455-3

    Article  CAS  PubMed  Google Scholar 

  • Sivanandan C, Sujatha TP, Prasad AM et al (2005) T-DNA tagging and characterization of a cryptic root-specific promoter in Arabidopsis. Biochim Biophys Acta-Gene Struct Expr 1731:202–208

    Article  CAS  Google Scholar 

  • Smale ST (1994) Core promoter architecture for eucaryotic protein-coding genes. In: Conaway RC, Conaway JW (eds) Transcription: mechanisms and regulation. Raven Press, Ltd., New York, pp 63–81

    Google Scholar 

  • Smale ST (1997) Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim Biophys Acta-Gene Struct Expr 1351:73–88

    Article  CAS  Google Scholar 

  • Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Annu Rev Biochem 72:449–479

    Article  CAS  PubMed  Google Scholar 

  • Springer PS (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreedharan S, Singh Shekhawat UK, Ganapathi TR (2015) Constitutive and stress‑inducible overexpression of a native aquaporin gene (MusaPIP2;6) in transgenic banana plants signals its pivotal role in salt tolerance. Plant Mol Biol 88:41–52. doi:10.1007/s11103-015-0305-2

    Article  CAS  PubMed  Google Scholar 

  • Struhl K (2001) Gene regulation – a paradigm for precision. Science 293:1054–1055

    Article  CAS  PubMed  Google Scholar 

  • Sundaresan V, Springer P, Volpe T et al (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev 9:1797–1810

    Article  CAS  PubMed  Google Scholar 

  • Sunil Kumar GB, Ganapathi TR, Revathi CJ, Srinivas L, Bapat VA (2005) Expression of hepatitis B surface antigen in transgenic banana plants. Planta 222:484–493

    Article  CAS  Google Scholar 

  • Swennen R, Arinaitwe G, Cammue BPA et al (2003) Transgenic approaches for resistance to Mycosphaerellaleaf spot diseases in Musa spp. In: Mycosphaerella leaf spot diseases of bananas: present status and outlook. Proceedings of the 2nd international workshop on Mycosphaerella leaf spot diseases of bananas. L. Jacome, P. Lepoivre, D. Marin, R. Ortiz, R. Romero and J.V. Escalant, editors. San José, Costa Rica, 20–23 May 2002. INIBAP, Montpellier, France. pp. 209–238

    Google Scholar 

  • Tang Y, Kuang J, Wang F et al (2013) Molecular characterization of PR and WRKY genes during SA- and MeJA-induced resistance against Colletotrichum musae in banana fruit. Postharvest Biol Technol 79:62–68. doi:10.1016/j.postharvbio.2013.01.004

    Article  CAS  Google Scholar 

  • Teeri TH, Herrera-Estrella L, Depicker A, Van Montagu M, Palva ET (1986) Identification of plant promoters in situ by T-DNA-mediated transcriptional fusions to the npt-II gene. EMBO J 5:1755–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JF, Hayes LS, Lloyd DB (1991) Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene 103:171–177

    Article  CAS  PubMed  Google Scholar 

  • Topping JF, Wei WB, Lindsey K (1991) Functional tagging of regulatory elements in the plant genome. Development 112:1009–1019

    CAS  PubMed  Google Scholar 

  • Van Leeuwen W, Hagendoorn MJM, Ruttink T et al (2000) The use of the luciferase reporter system for in planta gene expression studies. Plant Mol Biol Report 18:143a–143t

    Article  Google Scholar 

  • Vanhove AC, Vermaelen W, Swennen R, Carpentier SC (2015) A look behind the screens: characterization of the HSP70 family during osmotic stress in a non-model crop. J Proteomics 119:10–20. doi:10.1016/j.jprot.2015.01.014

    Article  CAS  PubMed  Google Scholar 

  • Venter M, Botha FC (2004) Promoter analysis and transcription profiling: integration of genetic data enhances understanding of gene expression. Physiol Plant 120:74–83

    Article  CAS  PubMed  Google Scholar 

  • Verkhusha VV, Kuznetsova IM, Stepanenko OV et al (2003) High stability of Discosoma DsRed as compared to Aequorea EGFP. Biochemistry 42:7879–7884

    Article  CAS  PubMed  Google Scholar 

  • Vishnevetsky J, White TL Jr, Palmateer AJ et al (2011) Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Res 20:61–72. doi:10.1007/s11248-010-9392-7

    Article  CAS  PubMed  Google Scholar 

  • Wang XL, Peng XX (2001a) Cloning of promoter of banana fruit-specific ACC synthase gene and primary study on its function. Chin J Biotechnol 17:293–296

    CAS  Google Scholar 

  • Wang XL, Peng XX (2001b) Cloning of promoter of banana fruit ripening-related ACO1 and primary study on its function. Chin J Biotechnol 17:428–431

    Google Scholar 

  • Wood KV (1995) Marker proteins for gene expression. Curr Opin Biotechnol 6:50–58

    Article  CAS  PubMed  Google Scholar 

  • Wu CH, Madabusi L, Nishioka H et al (2001) Analysis of core promoter sequences located downstream from the TATA element in the hsp70 promoter from Drosophila melanogaster. Mol Cell Biol 21:1593–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Chen J, Kuang J et al (2013) Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. J Exp Bot 64(8):2499–2510. doi:10.1093/jxb/ert108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto YY, Obokata J (2007) PPDB: a plant promoter database. Nucleic Acids Res 36:D977–D981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamoto YY, Ichida H, Matsui M et al (2007a) Identification of plant promoter constituents by analysis of local distribution of short sequences. BMC Genomics 8:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamoto YY, Ichida H, Abe T et al (2007b) Differentiation of core promoter architecture between plants and mammals revealed by LDSS analysis. Nucleic Acids Res 35:6219–6226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang IC, Iommarini JP, Becker DK et al (2003) A promoter derived from taro bacilliform badnavirus drives strong expression in transgenic banana and tobacco plants. Plant Cell Rep 21:1199–1206

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Dabi T, Lamb C (1995) TATA box and initiator functions in the accurate transcription of a plant minimal promoter in vitro. Plant Cell 7:1681–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Promoter activity in banana transgenic lines was performed in the framework of the SENESCYT project: PIC-08-0000300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efrén Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Santos, E. et al. (2016). Promoter Analysis in Banana. In: Mohandas, S., Ravishankar, K. (eds) Banana: Genomics and Transgenic Approaches for Genetic Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-10-1585-4_11

Download citation

Publish with us

Policies and ethics