Skip to main content

Higher Genus Amplitudes in SUSY Double-Well Matrix Model for 2D IIA Superstring

  • Conference paper
  • First Online:
Lie Theory and Its Applications in Physics (LT 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 191))

Included in the following conference series:

  • 1224 Accesses

Abstract

We discuss a simple supersymmetric double-well matrix model which is considered to give a perturbation formulation of two-dimensional type IIA superstring theory on a nontrivial Ramond-Ramond background. Full nonperturbative contributions to the free energy are computed by using the technique of random matrix theory, and the result shows that supersymmetry (SUSY) is spontaneously broken by nonperturbative effects due to instantons. In addition, one-point functions of operators that are not protected by SUSY are obtained to all orders in genus expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We can repeat the parallel argument for “momentum background” in the type IIB theory, which is equivalent to the “winding background” in the type IIA theory through T-duality with respect to the \(S^1\) direction.

References

  1. T. Banks, W. Fischler, S. H. Shenker, L. Susskind, Phys. Rev. D 55 (1997) 5112–5128.

    Google Scholar 

  2. P. Di Francesco, P. H. Ginsparg, J. Zinn-Justin, Phys. Rept. 254 (1995) 1–133.

    Google Scholar 

  3. R. Dijkgraaf, E. P. Verlinde, H. L. Verlinde, Nucl. Phys. B 500 (1997) 43–61.

    Google Scholar 

  4. G. V. Dunne and M. Unsal, JHEP 1211 (2012) 170.

    Article  MathSciNet  Google Scholar 

  5. M. G. Endres, T. Kuroki, F. Sugino, H. Suzuki, Nucl. Phys. B 876 (2013) 758–793.

    Google Scholar 

  6. D. Gaiotto, L. Rastelli, T. Takayanagi, JHEP 0505 (2005) 029.

    Article  MathSciNet  Google Scholar 

  7. P. A. Grassi, Y. Oz, Preprint arXiv:hep-th/0507168.

  8. U. Haagerup and S. Thorbj\(\phi \)rnsen, Preprint arXiv:1004.3479 [math.P.R].

  9. S. P. Hastings and J. B. McLeod, Arch. Rat. Mech. Anal. 73 (1980) 31–51.

    Google Scholar 

  10. N. Ishibashi, H. Kawai, Y. Kitazawa, A. Tsuchiya, Nucl. Phys. B 498 (1997) 467–491.

    Google Scholar 

  11. H. Ita, H. Nieder, Y. Oz, JHEP 0506 (2005) 055.

    Article  MathSciNet  Google Scholar 

  12. I. K. Kostov, in Cargese 1990, Proceedings, Random surfaces and quantum gravity, pp. 135–149.

    Google Scholar 

  13. T. Kuroki, F. Sugino, Nucl. Phys. B 830 (2010) 434–473.

    Google Scholar 

  14. T. Kuroki, F. Sugino, Nucl. Phys. B 844 (2011) 409–449.

    Google Scholar 

  15. T. Kuroki, F. Sugino, Nucl. Phys. B 867 (2013) 448–482.

    Google Scholar 

  16. T. Kuroki, F. Sugino, JHEP 1403 (2014) 006.

    Article  Google Scholar 

  17. D. Kutasov, N. Seiberg, Phys. Lett. B 251 (1990) 67–72.

    Google Scholar 

  18. M. Marino, JHEP 0812 (2008) 114.

    Article  Google Scholar 

  19. S. Murthy, JHEP 0311 (2003) 056.

    Article  Google Scholar 

  20. S. M. Nishigaki and F. Sugino, JHEP 1409 (2014) 104.

    Article  Google Scholar 

  21. V. Periwal and D. Shevitz, Phys. Rev. Lett. 64 (1990) 1326–1329.

    Google Scholar 

  22. N. Seiberg, Prog. Theor. Phys. Suppl. 102 (1990) 319–349.

    Google Scholar 

  23. C. A. Tracy and H. Widom, Commun. Math. Phys. 159 (1984) 151–174.

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Michael G. Endres, Tsunehide Kuroki, Shinsuke Nishigaki and Hiroshi Suzuki for collaboration. He is grateful to the organizers of LT-11, especially Professor Vladimir K. Dobrev, for invitation to the wonderful meeting and for warm hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiko Sugino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Sugino, F. (2016). Higher Genus Amplitudes in SUSY Double-Well Matrix Model for 2D IIA Superstring. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. LT 2015. Springer Proceedings in Mathematics & Statistics, vol 191. Springer, Singapore. https://doi.org/10.1007/978-981-10-2636-2_14

Download citation

Publish with us

Policies and ethics