Skip to main content

Applications of Carbonation Technologies

  • Chapter
  • First Online:
Carbon Dioxide Mineralization and Utilization
  • 1722 Accesses

Abstract

Reduction of CO2 emission in industries and/or power plants should be a portfolio option; for example, CO2 capture and alkaline solid waste treatment can be combined through an integrated approach, i.e., accelerated carbonation. Gaseous CO2 is fixed as thermodynamically stable solid precipitates, which are rarely released after mineralization. In addition, the proximity between the industrial CO2 emission and the waste residue sources reduces transportation costs. This chapter presents an integrated approach (i.e., accelerated carbonation technology) to capturing CO2 while improving the physico-chemical properties of alkaline solid wastes for the utilization in civil engineering. The carbonation of industrial alkaline wastes, such as steel slags and metalworking wastewater, has been proved to be an effective way to capture CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azdarpour A, Asadullah M, Mohammadian E, Hamidi H, Junin R, Karaei MA (2015) A review on carbon dioxide mineral carbonation through pH-swing process. Chem Eng J 279:615–630. doi:10.1016/j.cej.2015.05.064

    Article  Google Scholar 

  2. Said A, Mattila HP, Jarvinen M, Zevenhoven R (2013) Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2. Appl Energy 112:765–771. doi:10.1016/j.apenergy.2012.12.042

    Article  Google Scholar 

  3. Pérez-Moreno S, Gázquez M, Bolívar J (2015) CO2 sequestration by indirect carbonation of artificial gypsum generated in the manufacture of titanium dioxide pigments. Chem Eng J 262:737–746

    Article  Google Scholar 

  4. Seifritz W (1990) CO2 disposal by means of silicates. Nature 345(6275):486

    Article  Google Scholar 

  5. Bobicki ER, Liu Q, Xu Z, Zeng H (2012) Carbon capture and storage using alkaline industrial wastes. Prog Energy Combust Sci 38(2):302–320. doi:10.1016/j.pecs.2011.11.002

    Article  Google Scholar 

  6. Lackner KS (2003) A guide to CO2 sequestration. Science 300(5626):1677–1678

    Article  Google Scholar 

  7. Li W, Li B, Bai Z (2009) Electrolysis and heat pretreatment methods to promote CO2 sequestration by mineral carbonation. Chem Eng Res Des 87(2):210–215. doi:10.1016/j.cherd.2008.08.001

    Article  Google Scholar 

  8. Maroto-Valer MM, Fauth DJ, Kuchta ME, Zhang Y, Andrésen JM (2005) Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Process Technol 86(14–15):1627–1645. doi:10.1016/j.fuproc.2005.01.017

    Article  Google Scholar 

  9. Rao A, Anthony EJ, Manovic V (2008) Sonochemical treatment of FBC ash: a study of the reaction mechanism and performance of synthetic sorbents. Fuel 87(10–11):1927–1933. doi:10.1016/j.fuel.2007.11.007

    Article  Google Scholar 

  10. Chang EE, Chen T-L, Pan S-Y, Chen Y-H, Chiang P-C (2013) Kinetic modeling on CO2 capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed. J Hazard Mater 260:937–946. doi:10.1016/j.jhazmat.2013.06.052

    Article  Google Scholar 

  11. Chang EE, Chiu A-C, Pan S-Y, Chen Y-H, Tan C-S, Chiang P-C (2013) Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor. Int J Greenhouse Gas Control 12:382–389. doi:10.1016/j.ijggc.2012.11.026

    Article  Google Scholar 

  12. Druckenmiller ML, Maroto-Valer MM (2005) Carbon sequestration using brine of adjusted pH to form mineral carbonates. Fuel Process Technol 86(14–15):1599–1614. doi:10.1016/j.fuproc.2005.01.007

    Article  Google Scholar 

  13. Pan SY, Chiang PC, Chen YH, Tan CS, Chang EE (2013) Ex Situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed. Environ Sci Technol 47(7):3308–3315. doi:10.1021/es304975y

    Google Scholar 

  14. Pan S-Y, Chiang P-C, Chen Y-H, Tan C-S, Chang EE (2014) Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: maximization of carbonation conversion. Appl Energy 113:267–276. doi:10.1016/j.apenergy.2013.07.035

    Article  Google Scholar 

  15. Santos RM, Ceulemans P, Van Gerven T (2012) Synthesis of pure aragonite by sonochemical mineral carbonation. Chem Eng Res Des 90(6):715–725. doi:10.1016/j.cherd.2011.11.022

    Article  Google Scholar 

  16. Santos RM, François D, Mertens G, Elsen J, Van Gerven T (2013) Ultrasound-intensified mineral carbonation. Appl Therm Eng 57(1–2):154–163. doi:10.1016/j.applthermaleng.2012.03.035

    Article  Google Scholar 

  17. Santos RM, Chiang YW, Elsen J, Van Gerven T (2014) Distinguishing between carbonate and non-carbonate precipitates from the carbonation of calcium-containing organic acid leachates. Hydrometallurgy 147–148:90–94. doi:10.1016/j.hydromet.2014.05.001

    Article  Google Scholar 

  18. Jo H, Park S-H, Jang Y-N, Chae S-C, Lee P-K, Jo HY (2014) Metal extraction and indirect mineral carbonation of waste cement material using ammonium salt solutions. Chem Eng J 254:313–323. doi:10.1016/j.cej.2014.05.129

    Article  Google Scholar 

  19. Dri M, Sanna A, Maroto-Valer MM (2013) Dissolution of steel slag and recycled concrete aggregate in ammonium bisulphate for CO2 mineral carbonation. Fuel Process Technol 113:114–122. doi:10.1016/j.fuproc.2013.03.034

    Article  Google Scholar 

  20. Kakizawa M, Yamasaki A, Yanagisawa Y (2001) A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid. Energy 26:341–354

    Article  Google Scholar 

  21. Sun Y, Yao MS, Zhang JP, Yang G (2011) Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chem Eng J 173:437–445

    Article  Google Scholar 

  22. Eloneva S, Teir S, Salminen J, Fogelholm CJ, Zevenhoven R (2008) Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy 33(9):1461–1467

    Article  Google Scholar 

  23. Eloneva S, Puheloinen EM, Kanerva J, Ekroos A, Zevenhoven R, Fogelholm CJ (2010) Co-utilisation of CO2 and steelmaking slags for production of pure CaCO3-legislative issues. J Clean Prod 18:1833–1839

    Article  Google Scholar 

  24. Teir S, Eloneva S, Fogelholm C-J, Zevenhoven R (2007) Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production. Energy 32(4):528–539. doi:10.1016/j.energy.2006.06.023

    Article  Google Scholar 

  25. Kodama S, Nishimoto T, Yamamoto N, Yogo K, Yamada K (2008) Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution. Energy 33(5):776–784. doi:10.1016/j.energy.2008.01.005

    Article  Google Scholar 

  26. Park A, Fan L (2004) mineral sequestration: physically activated dissolution of serpentine and pH swing process. Chem Eng Sci 59(22–23):5241–5247. doi:10.1016/j.ces.2004.09.008

    Article  Google Scholar 

  27. New Energy and Industrial Technology Development Organization (NEDO) (1993) A survey on the current state of research and development for techniques to recover and sequester CO2 from thermal power plants (II) (Karyoku hatsuden puranto karano CO2 kaishu sisutemu ni kansuru chosa (II)) The Institute of Applied Energy (IAE). NEDO, Tokyo

    Google Scholar 

  28. Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM (2014) A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev 43(23):8049–8080. doi:10.1039/c4cs00035h

    Article  Google Scholar 

  29. Jung S, Wang LP, Dodbiba G, Fujita T (2014) Two-step accelerated mineral carbonation and decomposition analysis for the reduction of CO(2) emission in the eco-industrial parks. J Environ Sci (China) 26(7):1411–1422. doi:10.1016/j.jes.2014.05.006

    Article  Google Scholar 

  30. Nduagu E, Bjorklof T, Fagerlund J, Makila E, Salonen J, Geerlings H, Zevenhoven R (2012) Production of magnesium hydroxide from magnesium silicate for the purposes of CO2 minralization—Part 2: Mg extraction modeling and applcation to different Mg silicate rocks. Miner Eng 30(1):87–94

    Article  Google Scholar 

  31. Costa G, Baciocchi R, Polettini A, Pomi R, Hills CD, Carey PJ (2007) Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues. Environ Monit Assess 135(1–3):55–75. doi:10.1007/s10661-007-9704-4

    Article  Google Scholar 

  32. Huntzinger DN, Gierke JS, Kawatra SK, Eisele TC, Sutter LL (2009) Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ Sci Technol 43(6):1986–1992

    Article  Google Scholar 

  33. Haug TA, Kleiv RA, Munz IA (2010) Investigating dissolution of mechanically activated olivine for carbonation purposes. Appl Geochem 25(10):1547–1563. doi:10.1016/j.apgeochem.2010.08.005

    Article  Google Scholar 

  34. Pan S-Y, Chang EE, Chiang P-C (2012) CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12:770–791. doi:10.4209/aaqr.2012.06.0149

    Google Scholar 

  35. Chang EE, Pan S-Y, Chen Y-H, Chu H-W, Wang C-F, Chiang P-C (2011) CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor. J Hazard Mater 195:107–114. doi:10.1016/j.jhazmat.2011.08.006

    Article  Google Scholar 

  36. Alper E, Wichtendahl B, Deckwer WD (1980) Gas absorption mechanism in catalytic slurry reactor. Chem Eng Sci 35:217–222

    Article  Google Scholar 

  37. Ostergaard K (1968) Gas-liquid-particle operations in chemical reaction engineering. Adv Chem Eng 7:71–137. doi:10.1016/s0065-2377(08)60081-2

    Article  Google Scholar 

  38. Chang EE, Chen CH, Chen YH, Pan SY, Chiang PC (2011) Performance evaluation for carbonation of steel-making slags in a slurry reactor. J Hazard Mater 186(1):558–564. doi:10.1016/j.jhazmat.2010.11.038

    Article  Google Scholar 

  39. Monkman S, Shao Y, Shi C (2009) Carbonated ladle slag fines for carbon uptake and sand substitute. J Mater Civ Eng 21:657–665. doi:10.1061//asce/0899-1561/2009/21:11/657

    Article  Google Scholar 

  40. Chang EE, Pan SY, Yang L, Chen YH, Kim H, Chiang PC (2015) Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: performance evaluation and reaction kinetics. Waste Manag 43:283–292. doi:10.1016/j.wasman.2015.05.001

    Article  Google Scholar 

  41. Lin C, Chen B (2008) Characteristics of cross-flow rotating packed beds. J Ind Eng Chem 14(3):322–327. doi:10.1016/j.jiec.2008.01.004

    Article  Google Scholar 

  42. Wang M (2004) Controlling factors and mechanism of preparing needlelike CaCO3 under high-gravity environment. Powder Technol 142(2–3):166–174. doi:10.1016/j.powtec.2004.05.003

    Article  Google Scholar 

  43. Kelleher T, Fair JR (1996) Distillation studies in a high-gravity contactor. Ind Eng Chem Res 35:4646–4655

    Article  Google Scholar 

  44. Yu C-H, Huang C-H, Tan C-S (2012) A review of co2 capture by absorption and adsorption. Aerosol Air Qual Res 12:745–769. doi:10.4209/aaqr.2012.05.0132

    Google Scholar 

  45. Chen YH, Huang YH, Lin RH, Shang NC (2010) A continuous-flow biodiesel production process using a rotating packed bed. Bioresour Technol 101(2):668–673. doi:10.1016/j.biortech.2009.08.081

    Article  Google Scholar 

  46. Chen YH, Chang CY, Su WL, Chen CC, Chiu CY, Yu YH, Chiang PC, Chiang SIM (2004) Modeling ozone contacting process in a rotating packed bed. Ind Eng Chem Res 43(1):228–236

    Article  Google Scholar 

  47. Cheng H-H, Tan C-S (2011) Removal of CO2 from indoor air by alkanolamine in a rotating packed bed. Sep Purif Technol 82:156–166. doi:10.1016/j.seppur.2011.09.004

    Article  Google Scholar 

  48. Pan SY, Chiang PC, Chen YH, Chen CD, Lin HY, Chang EE (2013) Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed. Environ Sci Technol 47(23):13677–13685. doi:10.1021/es403323x

    Article  Google Scholar 

  49. Chang EE, Pan SY, Chen YH, Tan CS, Chiang PC (2012) Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. J Hazard Mater 227–228:97–106. doi:10.1016/j.jhazmat.2012.05.021

    Article  Google Scholar 

  50. Pan SY, Chen YH, Chen CD, Shen AL, Lin M, Chiang PC (2015) High-gravity carbonation process for enhancing CO2 fixation and utilization exemplified by the steelmaking industry. Environ Sci Technol 49(20):12380–12387. doi:10.1021/acs.est.5b02210

    Article  Google Scholar 

  51. Rao A, Anthony EJ, Jia L, Macchi A (2007) Carbonation of FBC ash by sonochemical treatment. Fuel 86(16):2603–2615. doi:10.1016/j.fuel.2007.02.004

    Article  Google Scholar 

  52. Huang C-H, Tan C-S (2014) A review: CO2 utilization. Aerosol Air Qual Res 14:480–499. doi:10.4209/aaqr.2013.10.0326

    Google Scholar 

  53. McCutcheon J, Power IM, Harrison AL, Dipple GM, Southam G (2014) A greenhouse-scale photosynthetic microbial bioreactor for carbon sequestration in magnesium carbonate minerals. Environ Sci Technol 48(16):9142–9151. doi:10.1021/es500344s

    Article  Google Scholar 

  54. Miyamoto K (2009) Biological energy production. In: Renewable biological systems for alternative sustainable energy production (FAO Agricultural Services Bulletin - 128). Food and Agriculture Organization of the United Nations

    Google Scholar 

  55. Lindskog S (1997) Structure and mechanism of carbonic anhydrase. Pharmacol Ther 74(1):1–20

    Article  Google Scholar 

  56. Li W, Chen W-S, Zhou P-P, Zhu S-L, Yu L-J (2013) Influence of initial calcium ion concentration on the precipitation and crystal morphology of calcium carbonate induced by bacterial carbonic anhydrase. Chem Eng J 218:65–72. doi:10.1016/j.cej.2012.12.034

    Article  Google Scholar 

  57. Li W, Chen W-S, Zhou P-P, Yu L-J (2013) Influence of enzyme concentration on bio-sequestration of CO2 in carbonate form using bacterial carbonic anhydrase. Chem Eng J 232:149–156. doi:10.1016/j.cej.2013.07.069

    Article  Google Scholar 

  58. Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD (2008) Advances in CO2 capture technology—The U.S. Department of Energy’s carbon sequestration program. Int J Greenhouse Gas Control 2(1):9–20. doi:10.1016/s1750-5836(07)00094-1

    Article  Google Scholar 

  59. Uibu M, Kuusik R (2009) Mineral trapping of CO2 via oil shale ash aqueous carbonation: controlling mechanism of process rate and development of continuous-flow reactor system. Oil Shale 26(1):40. doi:10.3176/oil.2009.1.06

    Article  Google Scholar 

  60. Liu Q, Mercedes Maroto-Valer M (2011) Investigation of the effect of brine composition and pH buffer on CO2-brine sequestration. Energy Procedia 4:4503–4507. doi:10.1016/j.egypro.2011.02.406

    Article  Google Scholar 

  61. Liu Q, Maroto-Valer MM (2012) Studies of pH buffer systems to promote carbonate formation for CO2 sequestration in brines. Fuel Process Technol 98:6–13. doi:10.1016/j.fuproc.2012.01.023

    Article  Google Scholar 

  62. Brady PV (1996) Physics and chemistry of mineral surfces. Chemistry and physics of surfaces and minerals. CRC Press LLC, Florida

    Google Scholar 

  63. Hangx SJT (2005) Behaviour of the CO2-H2O system and preliminary mineralisation model and experiments. Subfurface mineralisation: rate of CO2 mineralisation and geomechanical effects on host and seal formations. Shell International Exploration and Production (leader CATO WP 4.1)

    Google Scholar 

  64. Krevor SCM, Lackner KS (2011) Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration. Int J Greenhouse Gas Control 5(4):1073–1080. doi:10.1016/j.ijggc.2011.01.006

    Article  Google Scholar 

  65. O’ Connor WK, Dahlin DC, Rush GE, Gerdemann SJ, Penner LR, Nilsen DN (2005) Aqueous mineral carbonation: Mineral availability, pretreatment, reaction parameters, and process studies. Albany Research Center (ARC), U.S.A

    Google Scholar 

  66. Beard JS, Blencoe JG, Anovitz LM, Palmer DA (2004) Carbonation of metal silicates for long-term CO2 sequestration. Canada Patent

    Google Scholar 

  67. Jo H, Jang Y-N, Young Jo H (2012) Influence of NaCl on mineral carbonation of CO2 using cement material in aqueous solutions. Chem Eng Sci 80:232–241. doi:10.1016/j.ces.2012.06.034

    Article  Google Scholar 

  68. Nyambura MG, Mugera GW, Felicia PL, Gathura NP (2011) Carbonation of brine impacted fractionated coal fly ash: implications for CO2 sequestration. J Environ Manage 92(3):655–664. doi:10.1016/j.jenvman.2010.10.008

    Article  Google Scholar 

  69. El-Hassan H, Shao Y (2015) Early carbonation curing of concrete masonry units with Portland limestone cement. Cement Concr Compos 62:168–177. doi:10.1016/j.cemconcomp.2015.07.004

    Article  Google Scholar 

  70. Borges PHR, Costa JO, Milestone NB, Lynsdale CJ, Streatfield RE (2010) Carbonation of CH and C-S–H in composite cement pastes containing high amounts of BFS. Cem Concr Res 40:284–292. doi:10.1016/j.cemconres.2009.10.020

    Article  Google Scholar 

  71. Zhang F, Mo L, Deng M (2015) Mechanical strength and microstructure of mortars prepared with MgO-CaO-Fly ash-Portland cement blends after accelerated carbonation. J Chin Ceram Soc 43(8):1–8. doi:10.14062/j.issn.0454-5648.2015.08.01

    Google Scholar 

  72. Ghouleh Z, Guthrie RIL, Shao Y (2015) High-strength KOBM steel slag binder activated by carbonation. Constr Build Mater 99:175–183. doi:10.1016/j.conbuildmat.2015.09.028

    Article  Google Scholar 

  73. Mo L, Zhang F, Deng M (2015) Effects of carbonation treatment on the properties of hydrated fly ash-MgO-Portland cement blends. Constr Build Mater 96:147–154. doi:10.1016/j.conbuildmat.2015.07.193

    Article  Google Scholar 

  74. Wu HZ, Chang J, Pan ZZ, Cheng X (2009) Carbonate steelmaking slag to manufacture building materials. Adv Mater Res 79–82:1943–1946. doi:10.4028/www.scientific.net/AMR.79-82.1943

  75. Wu HZ, Chang J, Pan ZZ, Cheng X (2011) Effects of carbonation on steel slag products. Adv Mater Res 177:485–488. doi:10.4028/www.scientific.net/AMR.177.485

  76. Liang XJ, Ye ZM, Chang J (2012) Early hydration activity of composite with carbonated steel slag. J Chin Ceram Soc 40(2):228–233 (in Chinese)

    Google Scholar 

  77. Salman M, Cizer Ö, Pontikes Y, Santos RM, Snellings R, Vandewalle L, Blanpain B, Van Balen K (2014) Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material. Chem Eng J 246:39–52. doi:10.1016/j.cej.2014.02.051

    Article  Google Scholar 

  78. Salman M, Cizer Ö, Pontikes Y, vandewalle L, blanpain B, Van Balen K (2013) Carbonation potential of continuous casting stainless steel slag. Paper presented at the Acelerated Carbonation for Environmental and Material Engineering KU Leuven, Belgium

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pen-Chi Chiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chiang, PC., Pan, SY. (2017). Applications of Carbonation Technologies. In: Carbon Dioxide Mineralization and Utilization. Springer, Singapore. https://doi.org/10.1007/978-981-10-3268-4_8

Download citation

Publish with us

Policies and ethics