Skip to main content

Measures of Noncompactness in the Space of Continuous and Bounded Functions Defined on the Real Half-Axis

  • Chapter
  • First Online:
Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness

Abstract

In this chapter, we present a review of results concerning measures of noncompactness in the space of real functions defined, continuous and bounded on the real half-axis and furnished with the supremum norm. We will also investigate measures of noncompactness in a more general space of functions defined and continuous on the real half-axis and tempered by a given function. Moreover, we show the applicability of those measures of noncompactness in the theory of nonlinear functional integral equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Positive Solutions of Differential. Difference and Integral Equations. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  2. Akhmerov, R.R., Kamenski, M.I., Potapov, A.S., Rodkina, A.E., Sadovskii, B.N.: Measures of Noncompactness and Condensing Operators. Birkhäuser, Basel (1992)

    Book  Google Scholar 

  3. Appell, J., Banaś, J., Merentes, N.: Measures of noncompactness in the study of asymptotically stable and ultimately nondecreasing solutions of integral equations. Zeitsch. Anal. Anwend. 29, 251–273 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Appell, J., Zabrejko, P.P.: Nonlinear Superposition Operators. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  5. Arino, O., Pituk, M.: Convergence in asymptotically autonomous functional differential equations. J. Math. Anal. Appl. 237, 376–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ayerbe Toledano, J.M., Domínguez Benavides, T., López Acedo, G.: Measures of Noncompactness in Metric Fixed Point Theory. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  7. Azbelev, N.V., Maksimov, V.P., Rakhmatullina, L.F.: Introduction to Theory of Functional-Differential Equations. Nauka, Moscow (1990)

    MATH  Google Scholar 

  8. Banaś, J.: Measures of noncompactness in the space of continuous tempered functions. Demonstratio Math. 14, 127–133 (1981)

    MathSciNet  MATH  Google Scholar 

  9. Banaś, J.: Applications of Measures of Noncompactness to Various Problems. Zeszyty Naukowe Politech. Rzeszow, Rzeszów (1987)

    Google Scholar 

  10. Banaś, J.: Existence results for Volterra-Stieltjes quadratic integral equations on an unbounded interval. Math. Scand. 98, 143–160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Banaś, J., Cabrera, I.J.: On solutions of a neutral differential equation with deviating argument. Math. Comput. Model. 44, 1080–1088 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Banaś, J., Cabrera, I.J.: On existence and asymptotic behaviour of solutions of a functional integral equation. Nonlin. Anal. 66, 2246–2254 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Banaś, J., Chlebowicz A.: On an elementary inequality and its application in the theory of integral equations. J. Math. Ineq. (to appear)

    Google Scholar 

  14. Banaś, J., Dhage, B.C.: Global asymptotic stability of solutions of a functional integral equation. Nonlin. Anal. 69, 1945–1952 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Banaś, J., Dudek, S.: The technique of measures of noncompactness in Banach algebras and its applications to integral equations. Abstract Appl. Anal. 2013(537897), 15 (2013)

    Google Scholar 

  16. Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics, vol. 60. Marcel Dekker, New York (1980)

    Google Scholar 

  17. Banaś, J., Mursaleen, M.: Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations. Springer, New Delhi (2014)

    Book  MATH  Google Scholar 

  18. Banaś, J., Olszowy, L.: On solutions of a quadratic Urysohn integral equation on an unbounded interval. Dyn. Syst. Appl. 17, 255–270 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Banaś, J., O’Regan, D.: On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order. J. Math. Anal. Appl. 345, 573–582 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Banaś, J., O’Regan, D., Sadarangani, K.: On solutions of a quadratic Hammerstein integral equation on an unbounded interval. Dyn. Syst. Appl. 18, 251–264 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Banaś, J., Rzepka, B.: An application of a measure of noncompactness in the study of asymptotic stability. Appl. Math. Lett. 16, 1–6 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Banaś, J., Rzepka, B.: On existence and asymptotic stability of solutions of a nonlinear integral equation. J. Math. Anal. Appl. 284, 165–173 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Banaś, J., Zaja̧c, T.: Solvability of a functional integral equation of fractional order in the class of functions having limits at infinity. Nonlin. Anal. 71, 5491–5500 (2009)

    Google Scholar 

  24. Benchohra, M., Graef, J.R., Hamani, S.: Existence results for boundary value problems with nonlinear fractional differential equations. Appl. Anal. 87, 851–863 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Burton, T.A.: Volterra Integral and Differential Equations. Academic Press, New York (1983)

    MATH  Google Scholar 

  26. Burton, T.A., Zhang, B.: Fixed points and stability of an integral equation: nonuniqueness. Appl. Math. Lett. 17, 839–846 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cahlon, B., Eskin, M.: Existence theorems for an integral equation of the Chandrasekhar \(H\)-equation with perturbation. J. Math. Anal. Appl. 83, 159–171 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chandrasekhar, S.: Radiative Transfer. Dover, New York (1960)

    MATH  Google Scholar 

  29. Cichoń, M., El-Sayed, A.M.A., Salem, H.A.H.: Existence theorem for nonlinear functional integral equations of fractional orders. Comment. Math. 41, 59–67 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Corduneanu, C.: Integral Equations and Applications. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  31. Czerwik, S.: The existence of global solutions of a functional-differential equation. Colloq. Math. 36, 121–125 (1976)

    MathSciNet  MATH  Google Scholar 

  32. Darwish, M.A.: On quadratic integral equation of fractional orders. J. Math. Anal. Appl. 311, 112–119 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  34. Dhage, B.C., Ntouyas, S.K.: Existence results for nonlinear functional integral equations via a fixed point theorem of Krasnoselskii-Schaefer type. Nonlin. Stud. 9, 307–317 (2002)

    MATH  Google Scholar 

  35. Dronka, J.: Note on the Hausdorff measure of noncompactness in \(L^p\)-spaces. Bull. Pol. Acad. Sci. Math. 41, 39–41 (1993)

    MathSciNet  MATH  Google Scholar 

  36. Dunford, N., Schwartz, J.T.: Linear Operators I. International Publications, Leyden (1963)

    MATH  Google Scholar 

  37. El-Sayed, A.M.A.: Nonlinear functional differential equations of arbitrary order. Nonlin. Anal. 33, 181–186 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. El-Sayed, W.G.: Solvability of a neutral differential equation with deviated argument. J. Math. Anal. Appl. 327, 342–350 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Fichtenholz, G.M.: Differential and Integral Calculus, vol. II. PWN, Warsaw (2007)

    Google Scholar 

  40. Garg, M., Rao, A., Kalla, S.L.: Fractional generalization of temperature field problem in oil strata. Mat. Bilten 30, 71–84 (2006)

    MathSciNet  MATH  Google Scholar 

  41. Gaul, L., Klein, P., Kemple, S.: Damping description involving fractional operators. Mech. Syst. Signal Process. 5, 81–88 (1991)

    Article  Google Scholar 

  42. Goldens̆tein, L.S., Gohberg, I.T., Markus, A.S.: Investigations of some properties of bounded linear operators with their \(q\)-norms. Učen. Zap. Kishinevsk. Univ. 29, 29–36 (1957)

    Google Scholar 

  43. Goldens̆tein, L.S., Markus, A.S.: On a measure of noncompactness of bounded sets and linear operators. In: Studies in Algebra and Mathematical Analysis, Kishinev, 45–54 (1965)

    Google Scholar 

  44. Graef, J.R., Grammatikopoulos, M.K., Spikes, P.W.: Classification of solutions of functional differential equations of arbitrary order. Bull. Inst. Math. Acad. Sinica 9, 517–532 (1981)

    MathSciNet  MATH  Google Scholar 

  45. Grimm, L.J.: Existence and uniqueness for nonlinear neutral-differential equations. Bull. Amer. Math. Soc. 77, 374–376 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  47. Hu, S., Khavanin, M., Zhuang, W.: Integral equations arising in the kinetic theory of gases. Appl. Anal. 34, 261–266 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hu, X., Yan, J.: The global attractivity and asymptotic stability of solution of a nonlinear integral equation. J. Math. Anal. Appl. 321, 147–156 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Jaradat, O.K., Al-Omari, A., Momani, S.: Existence of the mild solution for fractional semilinear initial value problems. Nonlin. Anal. 69, 3153–3159 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V, Amsterdam (2006)

    MATH  Google Scholar 

  51. Kilbas, A.A., Trujillo, J.J.: Differential equations of fractional order: methods, results, problems I. Appl. Anal. 78, 153–192 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lakshmikantham, V., Devi, J.V.: Theory of fractional differential equations in a Banach space. Eur. J. Pure Appl. Math. 1, 38–45 (2008)

    MathSciNet  MATH  Google Scholar 

  53. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  54. O’Regan, D., Meehan, M.: Existence Theory for Nonlinear Integral and Integrodifferential Equations. Kluwer Academic, Dordrecht (1998)

    Book  MATH  Google Scholar 

  55. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  56. Rzepka, B.: On attractivity and asymptotic stability of solutions of a quadratic Volterra integral equation of fractional order. Topol. Meth. Nonlin. Anal. 32, 89–102 (2008)

    MathSciNet  MATH  Google Scholar 

  57. Rzepka, B.: On local attractivity and asymptotic stability of solutions of nonlinear Volterra-Stieltjes integral equations in two variables. Zeitsch. Anal. Anwend. (to appear)

    Google Scholar 

  58. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993)

    MATH  Google Scholar 

  59. Saxena, R.K., Kalla, S.L.: On a fractional generalization of the free electron laser equation. Appl. Math. Comput. 143, 89–97 (2003)

    MathSciNet  MATH  Google Scholar 

  60. Saxena, R.K., Mathai, A.M., Haubold, H.J.: On generalized kinetic equations. Physica A 344, 657–664 (2004)

    Article  MathSciNet  Google Scholar 

  61. Srivastava, H.M., Saxena, R.K.: Operators of fractional integration and their applications. Appl. Math. Comput. 118, 1–52 (2001)

    MathSciNet  MATH  Google Scholar 

  62. Zaja̧c, T.: Solvability of fractional integral equations on an unbounded interval through the theory of Volterra-Stieltjes integral equations. Zeitsch. Anal. Anwend. 33, 65–85 (2014)

    Google Scholar 

  63. Zaja̧c, T.: On monotonic and nonnegative solutions of a nonlinear Volterra-Stieltjes integral equation. J. Funct. Spaces 2014(601824), 5 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Józef Banaś .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Banaś, J., Merentes, N., Rzepka, B. (2017). Measures of Noncompactness in the Space of Continuous and Bounded Functions Defined on the Real Half-Axis. In: Banaś, J., Jleli, M., Mursaleen, M., Samet, B., Vetro, C. (eds) Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness. Springer, Singapore. https://doi.org/10.1007/978-981-10-3722-1_1

Download citation

Publish with us

Policies and ethics