Skip to main content

PEM Fuel Cell System Identification and Control

  • Conference paper
  • First Online:
Advances in Smart Grid and Renewable Energy

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 435))

Abstract

A model is an input–output mapping that suitably explains the behavior of a system. Model helps to analyze the functionality of the system and to design suitable controllers. System identification builds model from experimental data obtained by exciting the process with an input and observing its response at regular interval (Wibowo et al. in System identification of an interacting series process for real-time model predictive control, American Control Conference, pp. 4384–4389, 2009). Fuel cells (FC) systems are a potentially good clean energy conversion technology, and they have wide range of power generation applications. Classification of fuel cells is based on the fuel and the electrolyte type used. The proton exchange membrane fuel cells (PEMFC) are portable devices with superior performance and longer life. They act as a good source for ground vehicle applications. They also possess high power density and fast start-up time. In this work, mathematical model of a real-time PEMFC is obtained and its quality is assessed using various validation techniques. The model is obtained using system identification tool in MATLAB, and validation procedures like recursive least square algorithm, ARX and ARMAX were employed to assess the model. Controllers such as PI and PID were employed in order to achieve the desired load current by controlling the hydrogen flow rate. The values of the gain constant, integral time and derivative time were obtained using Cohen-Coon method. PI and PID control schemes were implemented using SIMULINK in MATLAB environment, and the system response was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wibowo, T.C.S., Saad, N., Karsiti, M.N.: System identification of an interacting series process for real-time model predictive control, American Control Conference, pp. 4384–4389 (2009)

    Google Scholar 

  2. Spiegel, C.: PEM fuel cell modeling and simulation using MATLAB. Academic Press, London (2011)

    Google Scholar 

  3. Ljung, L.: System identification—theory for the user, 2nd edn. Prentice-Hall, New Jersey (1999)

    Google Scholar 

  4. Astrom, K.J., Wittenmark, B.: Adaptive control, 2nd edn. Dover Publications, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinagapani Arun Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Arun Kumar, P., Geetha, M., Chandran, K., Sanjeevikumar, P. (2018). PEM Fuel Cell System Identification and Control. In: SenGupta, S., Zobaa, A., Sherpa, K., Bhoi, A. (eds) Advances in Smart Grid and Renewable Energy. Lecture Notes in Electrical Engineering, vol 435. Springer, Singapore. https://doi.org/10.1007/978-981-10-4286-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4286-7_44

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4285-0

  • Online ISBN: 978-981-10-4286-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics