Skip to main content

Controlling the Electrical Property of Highly Conductive Pyrazine Single-Molecule Junction

  • Chapter
  • First Online:
Design and Control of Highly Conductive Single-Molecule Junctions

Part of the book series: Springer Theses ((Springer Theses))

  • 295 Accesses

Abstract

In Chap. 6, N2 was successfully placed between Pt electrodes. The lone pair of N2 formed a single-molecule junction with a high, well-defined conductance value. In this chapter, an application of the pyrazine single-molecule junction is investigated based on the findings in Chap. 6. Pyrazine is expected to have two conductance states. One is the configuration where a π orbital is parallel to the bonding direction. The other is the configuration where a p orbital is vertical to the bonding direction. Here, bi-stable states were fabricated, and their configurations were investigated in terms of their conductance and differential conductance, near edge X-ray fine structure, and theoretical calculations. The defined configurations were switched by an external force. The electrical properties of the single-molecule junction were controlled by changing the interface structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.C. Jia, J.Y. Wang, C.J. Yao, Y. Cao, Y.W. Zhong, Z.R. Liu, Z.F. Liu, X.F. Guo, Conductance switching and mechanisms in single-molecule junctions. Angew. Chem. Int. Ed. 52, 8666–8670 (2013)

    Article  CAS  Google Scholar 

  2. D. Dulic, S.J. van der Molen, T. Kudernac, H.T. Jonkman, J.J.D. de Jong, T.N. Bowden, J. van Esch, B.L. Feringa, B.J. van Wees, One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003)

    Article  Google Scholar 

  3. F. Schwarz, G. Kastlunger, F. Lissel, C. Egler-Lucas, S.N. Semenov, K. Venkatesan, H. Berke, R. Stadler, E. Lortscher, Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions. Nat. Nanotechnol. 11, 170–176 (2016)

    Article  CAS  Google Scholar 

  4. W.H. Zhu, G.H. Ding, B. Dong, Negative differential conductance and hysteretic current switching of benzene molecular junction in a transverse electric field. Nanotechnology 25, 465202 (2014)

    Article  Google Scholar 

  5. R.X. Wu, R.Y. Chen, C.B. Qin, Y. Gao, Z.X. Qiao, G.F. Zhang, L.T. Xiao, S.T. Jia, An electric field induced reversible single-molecule fluorescence switch. Chem. Commun. 51, 7368–7371 (2015)

    Article  CAS  Google Scholar 

  6. I. Franco, C.B. George, G.C. Solomon, G.C. Schatz, M.A. Ratner, Mechanically activated molecular switch through single-molecule pulling. J. Am. Chem. Soc. 133, 2242–2249 (2011)

    Article  CAS  Google Scholar 

  7. S.Y. Quek, M. Kamenetska, M.L. Steigerwald, H.J. Choi, S.G. Louie, M.S. Hybertsen, J.B. Neaton, L. Venkataraman, Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 4, 230–234 (2009)

    Article  CAS  Google Scholar 

  8. S. Kaneko, C. Motta, G.P. Brivio, M. Kiguchi, Mechanically controllable bi-stable states in a highly conductive single pyrazine molecular junction. Nanotechnology 24, 315201 (2013)

    Article  Google Scholar 

  9. M. Kiguchi, T. Ohto, S. Fujii, K. Sugiyasu, S. Nakajima, M. Takeuchi, H. Nakamura, Single molecular resistive switch obtained via sliding multiple anchoring points and varying effective wire length. J. Am. Chem. Soc. 136, 7327–7332 (2014)

    Article  CAS  Google Scholar 

  10. Y.F. Wang, J. Kroger, R. Berndt, W.A. Hofer, Pushing and pulling a Sn Ion through an adsorbed phthalocyanine molecule. J. Am. Chem. Soc. 131, 3639–3643 (2009)

    Article  CAS  Google Scholar 

  11. T.A. Su, H.X. Li, M.L. Steigerwald, L. Venkataraman, C. Nuckolls, Stereoelectronic switching in single-molecule junctions. Nat. Chem. 7, 215–220 (2015)

    Article  CAS  Google Scholar 

  12. Y. Kim, H. Song, F. Strigl, H.F. Pernau, T. Lee, E. Scheer, Conductance and vibrational states of single-molecule junctions controlled by mechanical stretching and material variation. Phys. Rev. Lett. 106, 196804 (2011)

    Article  Google Scholar 

  13. E.G. Emberly, G. Kirczenow, The smallest molecular switch. Phys. Rev. Lett. 91, 188301 (2003)

    Article  Google Scholar 

  14. Y. Kitaguchi, S. Habuka, H. Okuyama, S. Hatta, T. Aruga, T. Frederiksen, M. Paulsson, H. Ueba, Controlling single-molecule junction conductance by molecular interactions. Sci. Rep. 5, 11796 (2015)

    Article  CAS  Google Scholar 

  15. W. Haiss, C.S. Wang, I. Grace, A.S. Batsanov, D.J. Schiffrin, S.J. Higgins, M.R. Bryce, C.J. Lambert, R.J. Nichols, Precision control of single-molecule electrical junctions. Nat. Mater. 5, 995–1002 (2006)

    Article  CAS  Google Scholar 

  16. C.R. Hickenboth, J.S. Moore, S.R. White, N.R. Sottos, J. Baudry, S.R. Wilson, Biasing reaction pathways with mechanical force. Nature 446, 423–427 (2007)

    Article  CAS  Google Scholar 

  17. D.A. Davis, A. Hamilton, J.L. Yang et al., Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459, 68–72 (2009)

    Article  CAS  Google Scholar 

  18. C.P. Collier, E.W. Wong, M. Belohradsky, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath, Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999)

    Article  CAS  Google Scholar 

  19. M. Taniguchi, M. Tsutsui, K. Yokota, T. Kawai, Mechanically-controllable single molecule switch based on configuration specific electrical conductivity of metal-molecule-metal junctions. Chem. Sci. 1, 247–253 (2010)

    Article  CAS  Google Scholar 

  20. N.D. Lang, P. Avouris, Electrical conductance of individual molecules. Phys. Rev. B 64, 125323 (2001)

    Article  Google Scholar 

  21. J.Q. Hou, H.S. Kang, K.W. Kim, J.R. Hahn, Binding characteristics of pyridine on Ag(110). J. Chem. Phys. 128, 134707 (2008)

    Article  Google Scholar 

  22. D.B. Dougherty, J. Lee, J.T. Yates, Role of conformation in the electronic properties of chemisorbed pyridine on Cu(110): an Stm/Sts study. J. Phys. Chem. B 110, 11991–11996 (2006)

    Article  CAS  Google Scholar 

  23. S. Kaneko, M. Kiguchi, Investigation on the pyrazine molecular junction studied by conductance measurement and near edge X-ray absorption fine structure. Fuller. Nanotub. Car. 22, 166–172 (2014)

    Article  CAS  Google Scholar 

  24. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, The SIESTA method for Ab initio order-N materials simulation. J. Phys.-Condens. Mat. 14, 2745–2779 (2002)

    Article  CAS  Google Scholar 

  25. E. Artacho, E. Anglada, O. Dieguez et al., The SIESTA Method; developments and applicability. J. Phys.-Condens. Mat. 20, 064208 (2008)

    Article  Google Scholar 

  26. M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)

    Article  Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  28. M. Kiguchi, O. Tal, S. Wohlthat, F. Pauly, M. Krieger, D. Djukic, J.C. Cuevas, J.M. van Ruitenbeek, Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes. Phys. Rev. Lett. 101, 046801 (2008)

    Article  CAS  Google Scholar 

  29. N. Agrait, A.L. Yeyati, J.M. van Ruitenbeek, Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003)

    Article  CAS  Google Scholar 

  30. W.Y. Wang, T. Lee, I. Kretzschmar, M.A. Reed, Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. Nano Lett. 4, 643–646 (2004)

    Article  CAS  Google Scholar 

  31. A.V. Khotkevich, Modern state of point contact spectroscopy of electron-phonon interaction in transition metals. Phys. B 218, 31–34 (1996)

    Article  CAS  Google Scholar 

  32. M. Paulsson, T. Frederiksen, H. Ueba, N. Lorente, M. Brandbyge, Unified description of inelastic propensity rules for electron transport through nanoscale junctions. Phys. Rev. Lett. 100, 226604 (2008)

    Article  Google Scholar 

  33. M. Kumar, R. Avriller, A.L. Yeyati, J.M. van Ruitenbeek, Detection of vibration-mode scattering in electronic shot noise. Phys. Rev. Lett. 108, 146602 (2012)

    Article  Google Scholar 

  34. C. Untiedt, G.R. Bollinger, S. Vieira, N. Agrait, Quantum interference in atomic-sized point contacts. Phys. Rev. B 62, 9962–9965 (2000)

    Article  CAS  Google Scholar 

  35. B. Ludoph, M.H. Devoret, D. Esteve, C. Urbina, J.M. van Ruitenbeek, Evidence for saturation of channel transmission from conductance fluctuations in atomic-size point contacts. Phys. Rev. Lett. 82, 1530–1533 (1999)

    Article  CAS  Google Scholar 

  36. A.L. Johnson, E.L. Muetterties, J. Stohr, F. Sette, Chemisorption geometry of pyridine on Pt(111) by Nexafs. J. Phys. Chem. 89, 4071–4075 (1985)

    Article  CAS  Google Scholar 

  37. J.A. Horsley, J. Stohr, A.P. Hitchcock, D.C. Newbury, A.L. Johnson, F. Sette, Resonances in the K-shell excitation-spectra of benzene and pyridine—gas-phase, solid, and chemisorbed states. J. Chem. Phys. 83, 6099–6107 (1985)

    Article  CAS  Google Scholar 

  38. C. Toher, A. Filippetti, S. Sanvito, K. Burke, Self-interaction errors in density-functional calculations of electronic transport. Phys. Rev. Lett. 95, 146402 (2005)

    Article  CAS  Google Scholar 

  39. Y.S. Park, A.C. Whalley, M. Kamenetska, M.L. Steigerwald, M.S. Hybertsen, C. Nuckolls, L. Venkataraman, Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines. J. Am. Chem. Soc. 129, 15768–157689 (2007)

    Article  CAS  Google Scholar 

  40. W. Hong, D.Z. Manrique, P. Moreno-Garcia, M. Gulcur, A. Mishchenko, C.J. Lambert, M.R. Bryce, T. Wandlowski, Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group. J. Am. Chem. Soc. 134, 2292–2304 (2012)

    Article  CAS  Google Scholar 

  41. A. Mishchenko, L.A. Zotti, D. Vonlanthen, M. Burkle, F. Pauly, J.C. Cuevas, M. Mayor, T. Wandlowski, Single-molecule junctions based on nitrile-terminated biphenyls: a promising new anchoring group. J. Am. Chem. Soc. 133, 184–187 (2011)

    Article  CAS  Google Scholar 

  42. S. Kaneko, T. Nakazumi, M. Kiguchi, Fabrication of a well-defined single benzene molecule junction using Ag electrodes. J. Phys. Chem. Lett. 1, 3520–3523 (2010)

    Article  CAS  Google Scholar 

  43. M. Kiguchi, Electrical conductance of single C60 and benzene molecules bridging between Pt electrode. Appl. Phys. Lett. 95, 073301 (2009)

    Article  Google Scholar 

  44. M. Kiguchi, K. Murakoshi, Conductance of single C60 molecule bridging metal electrodes. J. Phys. Chem. C 112, 8140–8143 (2008)

    Article  CAS  Google Scholar 

  45. S. Kaneko, L. Wang, G.F. Luo et al., Electron transport through single endohedral Ce@C82 metallofullerenes. Phys. Rev. B 86, 155406 (2012)

    Article  Google Scholar 

  46. S. Kaneko, J.J. Zhang, J.W. Zhao, M. Kiguchi, Electronic conductance of platinum atomic contact in a nitrogen atmosphere. J. Phys. Chem. C 117, 9903–9907 (2013)

    Article  CAS  Google Scholar 

  47. M. Paulsson, M. Brandbyge, Transmission eigenchannels from nonequilibrium green’s functions. Phys. Rev. B 76, 115117 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kaneko .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kaneko, S. (2017). Controlling the Electrical Property of Highly Conductive Pyrazine Single-Molecule Junction. In: Design and Control of Highly Conductive Single-Molecule Junctions. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-4412-0_7

Download citation

Publish with us

Policies and ethics