Skip to main content

Chronic Pancreatitis and Pancreatic Cancer

  • Chapter
  • First Online:
Chronic Pancreatitis
  • 551 Accesses

Abstract

Pancreatic cancer is one of the deadliest diseases and the current therapeutic maneuvers have little impact on disease course and outcome. While understanding the cellular and molecular mechanisms underlying pancreatic cancer pathogenesis has long been one of the major focuses of cancer research, recent studies have unprecedentedly uncovered molecular and cellular bases for the sequential transformation from normal pancreatic epithelium to invasive pancreatic cancer. However, targeted therapy against genetic events accompanying this roadmap failed to generate benefits in clinic. Recent studies have identified that chronic inflammation in microenvironment is one of the critical factors initiating and driving pancreatic carcinogenesis. Targeted manipulation of certain components in tumor microenvironment has shown therapeutic promises in clinic. In this review, we will summarize current knowledge on the roles of inflammation and chronic pancreatitis in pancreatic cancer initiation and progression, and its clinic significance in early detection and intervention of pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akakura N, et al. Constitutive expression of hypoxia-inducible factor-1alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res. 2001;61:6548–54.

    CAS  PubMed  Google Scholar 

  • Asaumi H, Watanabe S, Taguchi M, Tashiro M, Otsuki M. Externally applied pressure activates pancreatic stellate cells through the generation of intracellular reactive oxygen species. Am J Physiol Gastrointest Liver Physiol. 2007;293:G972–8.

    Article  CAS  PubMed  Google Scholar 

  • Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45.

    Article  CAS  PubMed  Google Scholar 

  • Ballehaninna UK, Chamberlain RS. Serum CA 19-9 as a biomarker for pancreatic cancer—a comprehensive review. Indian J Surg Oncol. 2011;2:88–100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bansal P, Sonnenberg A. Pancreatitis is a risk factor for pancreatic cancer. Gastroenterology. 1995;109:247–51.

    Article  CAS  PubMed  Google Scholar 

  • Bardeesy N, DePinho RA. Pancreatic cancer biology and genetics. Nat Rev Cancer. 2002;2:897–909.

    Article  CAS  PubMed  Google Scholar 

  • Beatty GL, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331:1612–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet. 2011;12:846–60.

    Article  CAS  PubMed  Google Scholar 

  • Bielas JH, Loeb KR, Rubin BP, True LD, Loeb LA. Human cancers express a mutator phenotype. Proc Natl Acad Sci U S A. 2006;103:18238–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brugge WR, Lauwers GY, Sahani D, Fernandez-del Castillo C, Warshaw AL. Cystic neoplasms of the pancreas. N Engl J Med. 2004;351:1218–26.

    Article  CAS  PubMed  Google Scholar 

  • Campbell AS, Albo D, Kimsey TF, White SL, Wang TN. Macrophage inflammatory protein-3alpha promotes pancreatic cancer cell invasion. J Surg Res. 2005;123:96–101.

    Article  CAS  PubMed  Google Scholar 

  • Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–40.

    Article  CAS  PubMed  Google Scholar 

  • Carriere C, Young AL, Gunn JR, Longnecker DS, Korc M. Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras. Biochem Biophys Res Commun. 2009;382:561–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavestro GM, Comparato G, Nouvenne A, Sianesi M, Di Mario F. The race from chronic pancreatitis to pancreatic cancer. JOP. 2003;4:165–8.

    PubMed  Google Scholar 

  • Chan A, et al. Validation of biomarkers that complement CA19.9 in detecting early pancreatic cancer. Clin Cancer Res. 2014;20:5787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30:1073–81.

    Article  CAS  PubMed  Google Scholar 

  • Cooks T, Harris CC, Oren M. Caught in the cross fire: p53 in inflammation. Carcinogenesis. 2014;35:1680–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costello E, Greenhalf W, Neoptolemos JP. New biomarkers and targets in pancreatic cancer and their application to treatment. Nat Rev Gastroenterol Hepatol. 2012;9:435–44.

    Article  CAS  PubMed  Google Scholar 

  • Cote GA, Smith J, Sherman S, Kelly K. Technologies for imaging the normal and diseased pancreas. Gastroenterology. 2013;144:1262–71.e1.

    Google Scholar 

  • Crnogorac-Jurcevic T, et al. Proteomic analysis of chronic pancreatitis and pancreatic adenocarcinoma. Gastroenterology. 2005;129:1454–63.

    Article  CAS  PubMed  Google Scholar 

  • Cuzzocrea S, et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute pancreatitis induced by cerulein. Intensive Care Med. 2004;30:951–6.

    Article  PubMed  Google Scholar 

  • Diao L, Chen YG. PTEN, a general negative regulator of cyclin D expression. Cell Res. 2007;17:291–2.

    Article  CAS  PubMed  Google Scholar 

  • DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature. 1997;388:548–54.

    Article  CAS  PubMed  Google Scholar 

  • Elinav E, et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13:759–71.

    Article  CAS  PubMed  Google Scholar 

  • Elnemr A, et al. PPARgamma ligand (thiazolidinedione) induces growth arrest and differentiation markers of human pancreatic cancer cells. Int J Oncol. 2000;17:1157–64.

    CAS  PubMed  Google Scholar 

  • Farrow B, Evers BM. Inflammation and the development of pancreatic cancer. Surg Oncol. 2002;10:153–69.

    Article  PubMed  Google Scholar 

  • Fleisher AS, et al. Microsatellite instability in inflammatory bowel disease-associated neoplastic lesions is associated with hypermethylation and diminished expression of the DNA mismatch repair gene, hMLH1. Cancer Res. 2000;60:4864–8.

    CAS  PubMed  Google Scholar 

  • Friess H, Guo XZ, Nan BC, Kleeff J, Buchler MW. Growth factors and cytokines in pancreatic carcinogenesis. Ann N Y Acad Sci. 1999;880:110–21.

    Article  CAS  PubMed  Google Scholar 

  • Gansauge S, et al. Genetic alterations in chronic pancreatitis: evidence for early occurrence of p53 but not K-ras mutations. Br J Surg. 1998;85:337–40.

    Article  CAS  PubMed  Google Scholar 

  • Gidekel Friedlander SY, et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell. 2009;16:379–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glass CK, Saijo K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol. 2010;10:365–76.

    Article  CAS  PubMed  Google Scholar 

  • Goggins M. Molecular markers of early pancreatic cancer. J Clin Oncol. 2005;23:4524–31.

    Article  CAS  PubMed  Google Scholar 

  • Guerra C, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 2007;11:291–302.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Ethridge RT, Saito H, Rajaraman S, Evers BM. The PPARgamma ligand, 15d-PGJ2, attenuates the severity of cerulein-induced acute pancreatitis. Pancreas. 2003;27:58–66.

    Article  CAS  PubMed  Google Scholar 

  • Hengstler JG, et al. Mutation analysis of the cationic trypsinogen gene in patients with pancreatic cancer. Anticancer Res. 2000;20:2967–74.

    CAS  PubMed  Google Scholar 

  • Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362:1605–17.

    Article  CAS  PubMed  Google Scholar 

  • Hingorani SR, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4:437–50.

    Article  CAS  PubMed  Google Scholar 

  • Huang H, et al. Activation of nuclear factor-kappaB in acinar cells increases the severity of pancreatitis in mice. Gastroenterology. 2013;144:202–10.

    Article  CAS  PubMed  Google Scholar 

  • Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol. 2004;287:G7–17.

    Article  CAS  PubMed  Google Scholar 

  • Jackson L, Evers BM. Chronic inflammation and pathogenesis of GI and pancreatic cancers. Cancer Treat Res. 2006;130:39–65.

    Article  CAS  PubMed  Google Scholar 

  • Jackson AL, Loeb LA. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res. 2001;477:7–21.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs EJ, et al. Aspirin use and pancreatic cancer mortality in a large United States cohort. J Natl Cancer Inst. 2004;96:524–8.

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal M, LaRusso NF, Gores GJ. Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis. Am J Physiol Gastrointest Liver Physiol. 2001;281:G626–34.

    CAS  PubMed  Google Scholar 

  • Jaster R, et al. Peroxisome proliferator-activated receptor gamma overexpression inhibits pro-fibrogenic activities of immortalised rat pancreatic stellate cells. J Cell Mol Med. 2005;9:670–82.

    Article  CAS  PubMed  Google Scholar 

  • Jones S, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalthoff H, Roeder C, Brockhaus M, Thiele HG, Schmiegel W. Tumor necrosis factor (TNF) up-regulates the expression of p75 but not p55 TNF receptors, and both receptors mediate, independently of each other, up-regulation of transforming growth factor alpha and epidermal growth factor receptor mRNA. J Biol Chem. 1993;268:2762–6.

    CAS  PubMed  Google Scholar 

  • Kang H, et al. Downregulation of microRNA-362-3p and microRNA-329 promotes tumor progression in human breast cancer. Cell Death Differ. 2016;23(3):484–95.

    Article  CAS  PubMed  Google Scholar 

  • Keiles S, Kammesheidt A. Identification of CFTR, PRSS1, and SPINK1 mutations in 381 patients with pancreatitis. Pancreas. 2006;33:221–7.

    Article  CAS  PubMed  Google Scholar 

  • Klimstra DS, Longnecker DS. K-ras mutations in pancreatic ductal proliferative lesions. Am J Pathol. 1994;145:1547–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong X, et al. Detection of differentially expressed microRNAs in serum of pancreatic ductal adenocarcinoma patients: miR-196a could be a potential marker for poor prognosis. Dig Dis Sci. 2011;56:602–9.

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Li L, Li Z, Xie K. Targeted destruction of the orchestration of the pancreatic stroma and tumor cells in pancreatic cancer cases: molecular basis for therapeutic implications. Cytokine Growth Factor Rev. 2012;23:343–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73.

    Article  CAS  PubMed  Google Scholar 

  • Li L, et al. Down-regulation of microRNA-494 via loss of SMAD4 increases FOXM1 and beta-catenin signaling in pancreatic ductal adenocarcinoma cells. Gastroenterology. 2014;147:485–97.e18.

    Google Scholar 

  • Liao Z, et al. Guidelines: diagnosis and therapy for chronic pancreatitis. J Interv Gastroenterol. 2013;3:133–6.

    Google Scholar 

  • Lowenfels AB, et al. Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med. 1993;328:1433–7.

    Article  CAS  PubMed  Google Scholar 

  • Lowenfels AB, et al. Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group. J Natl Cancer Inst. 1997;89:442–6.

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Ouyang W, Huang C. Inflammation, a key event in cancer development. Mol Cancer Res. 2006;4:221–33.

    Article  PubMed  Google Scholar 

  • Maire F, et al. Differential diagnosis between chronic pancreatitis and pancreatic cancer: value of the detection of KRAS2 mutations in circulating DNA. Br J Cancer. 2002;87:551–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maitra A, Hruban RH. Pancreatic cancer. Annu Rev Pathol. 2008;3:157–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maitra A, Fukushima N, Takaori K, Hruban RH. Precursors to invasive pancreatic cancer. Adv Anat Pathol. 2005;12:81–91.

    Article  PubMed  Google Scholar 

  • Malats N, et al. Cystic fibrosis transmembrane regulator (CFTR) DeltaF508 mutation and 5T allele in patients with chronic pancreatitis and exocrine pancreatic cancer. PANKRAS II Study Group. Gut. 2001;48:70–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malka D, et al. Risk of pancreatic adenocarcinoma in chronic pancreatitis. Gut. 2002;51:849–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazur PK, Herner A, Neff F, Siveke JT. Current methods in mouse models of pancreatic cancer. Methods Mol Biol. 2015;1267:185–215.

    Article  CAS  PubMed  Google Scholar 

  • Mazzieri R, et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell. 2011;19:512–26.

    Article  CAS  PubMed  Google Scholar 

  • McDade TP, Perugini RA, Vittimberga FJ Jr, Carrigan RC, Callery MP. Salicylates inhibit NF-kappaB activation and enhance TNF-alpha-induced apoptosis in human pancreatic cancer cells. J Surg Res. 1999;83:56–61.

    Article  CAS  PubMed  Google Scholar 

  • McKay CJ, Glen P, McMillan DC. Chronic inflammation and pancreatic cancer. Best Pract Res Clin Gastroenterol. 2008;22:65–73.

    Article  CAS  PubMed  Google Scholar 

  • Mitchem JB, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013;73:1128–41.

    Article  CAS  PubMed  Google Scholar 

  • Morcos NY, Zakhary NI, Said MM, Tadros MM. Postoperative simple biochemical markers for prediction of bone metastases in Egyptian breast cancer patients. Ecancermedicalscience. 2013;7:305.

    PubMed  PubMed Central  Google Scholar 

  • Morris JP, Cano DA, Sekine S, Wang SC, Hebrok M. Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J Clin Invest. 2010;120:508–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller E, et al. Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proc Natl Acad Sci U S A. 2000;97:10990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neesse A, et al. Stromal biology and therapy in pancreatic cancer. Gut. 2011;60:861–8.

    Article  PubMed  Google Scholar 

  • Olive KP, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324:1457–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, et al. Nuclear factor-kappaB p65/relA silencing induces apoptosis and increases gemcitabine effectiveness in a subset of pancreatic cancer cells. Clin Cancer Res. 2008;14:8143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rachagani S, et al. Clinical implications of miRNAs in the pathogenesis, diagnosis and therapy of pancreatic cancer. Adv Drug Deliv Rev. 2015;81:16–33.

    Article  CAS  PubMed  Google Scholar 

  • Raimondi S, Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol. 2009;6:699–708.

    Article  PubMed  Google Scholar 

  • Reding T, et al. A selective COX-2 inhibitor suppresses chronic pancreatitis in an animal model (WBN/Kob rats): significant reduction of macrophage infiltration and fibrosis. Gut. 2006;55:1165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozenblum E, et al. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res. 1997;57:1731–4.

    CAS  PubMed  Google Scholar 

  • Sakorafas GH, Tsiotou AG. Pancreatic cancer in patients with chronic pancreatitis: a challenge from a surgical perspective. Cancer Treat Rev. 1999;25:207–17.

    Article  CAS  PubMed  Google Scholar 

  • Schernhammer ES, et al. A prospective study of aspirin use and the risk of pancreatic cancer in women. J Natl Cancer Inst. 2004;96:22–8.

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Whitcomb DC. Hereditary pancreatitis: a model for inflammatory diseases of the pancreas. Best Pract Res Clin Gastroenterol. 2002;16:347–63.

    Article  PubMed  Google Scholar 

  • Schultz NA, et al. MicroRNA biomarkers in whole blood for detection of pancreatic cancer. JAMA. 2014;311:392–404.

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Merchant N, Newsome G, Goldenberg DM, Gold DV. Differentiation of pancreatic ductal adenocarcinoma from chronic pancreatitis by PAM4 immunohistochemistry. Arch Pathol Lab Med. 2014;138:220–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimizu K, et al. Thiazolidinedione derivatives as novel therapeutic agents to prevent the development of chronic pancreatitis. Pancreas. 2002;24:184–90.

    Article  PubMed  Google Scholar 

  • Suzuki J, et al. Novel IkB kinase inhibitors for treatment of nuclear factor-kB-related diseases. Expert Opin Investig Drugs. 2011;20:395–405.

    Article  CAS  PubMed  Google Scholar 

  • Uomo I, Miraglia S, Pastorello M. Inflammation and pancreatic ductal adenocarcinoma: a potential scenario for novel drug targets. JOP. 2010;11:199–202.

    PubMed  Google Scholar 

  • Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378:607–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogelstein B, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–32.

    Article  CAS  PubMed  Google Scholar 

  • Wang LW, et al. Prevalence and clinical features of chronic pancreatitis in China: a retrospective multicenter analysis over 10 years. Pancreas. 2009;38:248–54.

    Article  CAS  PubMed  Google Scholar 

  • Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 1996;313(Pt 1):17–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie D, Xie K. Pancreatic cancer stromal biology and therapy. Genes Dis. 2015;2:133–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu JH, Kim H. Oxidative stress and cytokines in the pathogenesis of pancreatic cancer. J Cancer Prev. 2014;19:97–102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zagury D, Burny A, Gallo RC. Toward a new generation of vaccines: the anti-cytokine therapeutic vaccines. Proc Natl Acad Sci U S A. 2001;98:8024–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Funding: Supported in part by grants R01-CA129956, R01-CA148954, R01CA152309 and R01CA172233, and R01CA195651; and grant No.81402017 from NSFC of China.

Conflicts of Interest: The authors disclose no conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Ping Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd. and Shanghai Scientific and Technical Publishers

About this chapter

Cite this chapter

Kong, XY., Xie, KP. (2017). Chronic Pancreatitis and Pancreatic Cancer. In: Li, ZS., Liao, Z., Chen, JM., Férec, C. (eds) Chronic Pancreatitis. Springer, Singapore. https://doi.org/10.1007/978-981-10-4515-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4515-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4513-4

  • Online ISBN: 978-981-10-4515-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics