Skip to main content

Abstract

The chapter reviews the astrophysical observations of stellar-mass black holes, intermediate mass black holes, supermassive black holes, the observations supporting the idea that these objects are indeed black holes, and the spectral state classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    X-ray binaries are binary systems of a compact object (black hole or neutron star) and a stellar companion. The X-ray radiation is mainly generated by gas falling from the companion star (donor) to the compact object (accretor). The gas releases energy as it falls into the gravitational potential of the compact object and X-rays are emitted from the inner part of the accretion disk (see Sect. 4.5 for more details).

  2. 2.

    This number does not include the black holes observed with gravitational waves, but the latter could also be considered “confirmed” stellar-mass black holes because we have robust measurements of their masses from the gravitational wave signal.

  3. 3.

    Flows of gas ejected from the upper atmosphere of a star are quite common. In the case of HMXBs, the wind can be driven by radiation pressure on the resonance absorption lines of heavy elements [21].

  4. 4.

    Systems in which the companion star is very close to the black hole cannot exist, because the strong gravitational field around the compact object would disrupt an ordinary star.

  5. 5.

    Exceptions might be possible: the galaxy A2261-BCG has a very large mass but it might not have any supermassive black hole at its center [87].

  6. 6.

    The Eddington limit is the maximum luminosity for an object and is reached when the pressure of the radiation luminosity balance the gravitational force. See Appendix G for more details.

References

  1. B.P. Abbott et al., LIGO scientific and virgo collaborations. Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc]

  2. B.P. Abbott et al., LIGO scientific and virgo collaborations. Phys. Rev. Lett. 116, 241103 (2016), arXiv:1606.04855 [gr-qc]

  3. E. Agol, M. Kamionkowski, L.V.E. Koopmans, R.D. Blandford, Astrophys. J. 576, L131 (2002), arXiv:astro-ph/0203257

  4. A.V. Astashenok, S. Capozziello, S.D. Odintsov, Phys. Rev. D 89, 103509 (2014), arXiv:1401.4546 [gr-qc]

  5. M.E. Beer, P. Podsiadlowski, Mon. Not. R. Astron. Soc. 331, 351 (2002), arXiv:astro-ph/0109136

  6. K. Belczynski, T. Bulik, C.L. Fryer, A. Ruiter, J.S. Vink, J.R. Hurley, Astrophys. J. 714, 1217 (2010), arXiv:0904.2784 [astro-ph.SR]

  7. T.M. Belloni, Lect. Notes Phys. 794, 53 (2010), arXiv:0909.2474 [astro-ph.HE]

  8. A.E. Broderick, R. Narayan, Class. Quant. Grav. 24, 659 (2007), arXiv:gr-qc/0701154

  9. A.E. Broderick, A. Loeb, R. Narayan, Astrophys. J. 701, 1357 (2009), arXiv:0903.1105 [astro-ph.HE]

  10. S.M. Caballero-Nieves et al., Astrophys. J. 701, 1895 (2009), arXiv:0907.2422 [astro-ph.SR]

  11. D.E. Calvelo, S.D. Vrtilek, D. Steeghs, M.A.P. Torres, J. Neilsen, A.V. Filippenko, J.I.G. Hernandez, Mon. Not. R. Astron. Soc. 399, 539 (2009), arXiv:0905.1491 [astro-ph.SR]

  12. A.G. Cantrell et al., Astrophys. J. 710, 1127 (2010), arXiv:1001.0261 [astro-ph.HE]

  13. J. Casares, IAU Colloq. 158, 395 (1996)

    Google Scholar 

  14. J. Casares, P.A. Charles, Mon. Not. R. Astron. Soc. 271, L5 (1994)

    Google Scholar 

  15. J. Casares, P.G. Jonker, Space Sci. Rev. 183, 223 (2014), arXiv:1311.5118 [astro-ph.HE]

  16. J. Casares, P.A. Charles, T. Naylor, Nature 355, 614 (1992)

    Google Scholar 

  17. J. Casares, P.A. Charles, T.R. Marsh, Mon. Not. R. Astron. Soc. 277, L45 (1995)

    Google Scholar 

  18. J. Casares, E.L. Martin, P.A. Charles, P. Molaro, R. Rebolo, New Astron. 1, 299 (1997)

    Google Scholar 

  19. J. Casares, C. Zurita, T. Shahbaz, P.A. Charles, R.P. Fender, Astrophys. J. 613, L133 (2004), arXiv:astro-ph/0408331

  20. J. Casares et al., Astrophys. J. Suppl. 181, 238 (2009)

    Google Scholar 

  21. J.I. Castor, D.C. Abbott, R.I. Klein, Astrophys. J. 195, 157 (1975)

    Google Scholar 

  22. E.J.M. Colbert, R.F. Mushotzky, Astrophys. J. 519, 89 (1999), arXiv:astro-ph/9901023

  23. M. Coleman Miller, E.J.M. Colbert, Int. J. Mod. Phys. D 13, 1 (2004), arXiv:astro-ph/0308402

  24. J.M. Corral-Santana, J. Casares, T. Shahbaz, C. Zurita, I.G. Martinez-Pais, P. Rodriguez-Gil, Mon. Not. R. Astron. Soc. 413, 15 (2011), arXiv:1102.0654 [astro-ph.SR]

  25. D.D. Doneva, S.S. Yazadjiev, N. Stergioulas, K.D. Kokkotas, Phys. Rev. D 88, 084060 (2013), arXiv:1309.0605 [gr-qc]

  26. G. Dvali, C. Gomez, Fortsch. Phys. 61, 742 (2013), arXiv:1112.3359 [hep-th]

  27. G. Dvali, C. Gomez, Phys. Lett. B 719, 419 (2013), arXiv:1203.6575 [hep-th]

  28. A.A. Esin, J.E. McClintock, R. Narayan, Astrophys. J. 489, 865 (1997), arXiv:astro-ph/9705237

  29. A.C. Fabian, A. Lohfink, E. Kara, M.L. Parker, R. Vasudevan, C.S. Reynolds, Mon. Not. R. Astron. Soc. 451, 4375 (2015), arXiv:1505.07603 [astro-ph.HE]

  30. R. Fender, T. Belloni, Ann. Rev. Astron. Astrophys. 42, 317 (2004), arXiv:astro-ph/0406483

  31. R.P. Fender, S.T. Garrington, D.J. McKay, T.W.B. Muxlow, G.G. Pooley, R.E. Spencer, A.M. Stirling, E.B. Waltman, Mon. Not. R. Astron. Soc. 304, 865 (1999), arXiv:astro-ph/9812150

  32. A.V. Filippenko, R. Chornock, IAU Colloq. 7644, 1 (2001)

    Google Scholar 

  33. A.V. Filippenko, T. Matheson, A.J. Barth, Astrophys. J. 455, L139 (1995)

    Google Scholar 

  34. A.V. Filippenko, T. Matheson, D.C. Leonard, A.J. Barth, S.D. Van Dyk, Publ. Astron. Soc. Pac. 109, 461 (1997)

    Google Scholar 

  35. A.V. Filippenko, D.C. Leonard, T. Matheson, W. Li, E.C. Moran, A.G. Riess, Publ. Astron. Soc. Pac. 111, 969 (1999), arXiv:astro-ph/9904271

  36. K. Gebhardt, R.M. Rich, L.C. Ho, Astrophys. J. 578, L41 (2002), arXiv:astro-ph/0209313

  37. K. Gebhardt, R.M. Rich, L.C. Ho, Astrophys. J. 634, 1093 (2005), arXiv:astro-ph/0508251

  38. D.M. Gelino, T.E. Harrison, Astrophys. J. 599, 1254 (2003), arXiv:astro-ph/0308490

  39. A.M. Ghez, S. Salim, S.D. Hornstein, A. Tanner, M. Morris, E.E. Becklin, G. Duchene, Astrophys. J. 620, 744 (2005), arXiv:astro-ph/0306130

  40. J.E. Greene, L.C. Ho, Astrophys. J. 670, 92 (2007), arXiv:0707.2617 [astro-ph]

  41. J.I.G. Hernandez, J. Casares, Astron. Astrophys. 516, A58 (2010), arXiv:1004.0435 [astro-ph.GA]

  42. J.I.G. Hernandez, R. Rebolo, G. Israelian, A.V. Filippenko, R. Chornock, N. Tominaga, H. Umeda, K. Nomoto, Astrophys. J. 679, 732 (2008), arXiv:0801.4936 [astro-ph]

  43. E.T. Harlaftis, K. Horne, A.V. Filippenko, Publ. Astron. Soc. Pac. 108, 762 (1996)

    Google Scholar 

  44. E.T. Harlaftis, D. Steeghs, K. Horne, A.V. Filippenko, Astron. J. 114, 1170 (1997), arXiv:astro-ph/9707242

  45. J. Homan, T. Belloni, Astrophys. Space Sci. 300, 107 (2005), arXiv:astro-ph/0412597

  46. R.I. Hynes, D. Steeghs, J. Casares, P.A. Charles, K. O’Brien, Astrophys. J. 583, L95 (2003), arXiv:astro-ph/0301127

  47. Z. Ioannou, E.L. Robinson, W.F. Welsh, C.A. Haswell, Astrophys. J. 127, 481 (2004)

    ADS  Google Scholar 

  48. V. Kalogera, G. Baym, Astrophys. J. 470, L61 (1996)

    Article  ADS  Google Scholar 

  49. J. Khargharia, C.S. Froning, E.L. Robinson, Astrophys. J. 716, 1105 (2010), arXiv:1004.5358 [astro-ph.HE]

  50. J. Khargharia, C.S. Froning, E.L. Robinson, D.M. Gelino, Astron. J. 145, 21 (2013), arXiv:1211.2786 [astro-ph.SR]

  51. P.D. Kiel, J.R. Hurley, Mon. Not. R. Astron. Soc. 369, 1152 (2006), arXiv:astro-ph/0605080

  52. J. Kormendy, D. Richstone, Ann. Rev. Astron. Astrophys. 33, 581 (1995)

    Article  ADS  Google Scholar 

  53. J.P. Lasota, New Astron. Rev. 45, 449 (2001), arXiv:astro-ph/0102072

  54. J.M. Lattimer, Ann. Rev. Nucl. Part. Sci. 62, 485 (2012), arXiv:1305.3510 [nucl-th]

  55. P. Madau, M.J. Rees, Astrophys. J. 551, L27 (2001), arXiv:astro-ph/0101223

  56. E. Maoz, Astrophys. J. 494, L181 (1998), arXiv:astro-ph/9710309

  57. T.R. Marsh, E.L. Robinson, J.H. Wood, Mon. Not. R. Astron. Soc. 226, 137 (1994)

    Article  ADS  Google Scholar 

  58. J.E. McClintock, M.R. Garcia, N. Caldwell, E.E. Falco, P.M. Garnavich, P. Zhao, Astrophys. J. 551, L147 (2001), arXiv:astro-ph/0101421

  59. J.E. McClintock, R. Narayan, G.B. Rybicki, Astrophys. J. 615, 402 (2004), arXiv:astro-ph/0403251

  60. J.E. McClintock et al., Class. Quant. Grav. 28, 114009 (2011), arXiv:1101.0811 [astro-ph.HE]

  61. M.C. Miller, D.P. Hamilton, Mon. Not. R. Astron. Soc. 330, 232 (2002), arXiv:astro-ph/0106188

  62. S. Mineshige, J.C. Wheeler, Astrophys. J. 343, 241 (1989)

    Article  ADS  Google Scholar 

  63. T. Munoz-Darias, J. Casares, I.G. Martinez-Pais, Mon. Not. R. Astron. Soc. 385, 2205 (2008), arXiv:0801.3268 [astro-ph]

  64. T. Muoz-Darias, M. Coriat, D.S. Plant, G. Ponti, R.P. Fender, R.J.H. Dunn, Mon. Not. R. Astron. Soc. 432, 1330 (2013), arXiv:1304.2072 [astro-ph.HE]

  65. R. Narayan, I.S. Yi, Astrophys. J. 428, L13 (1994), arXiv:astro-ph/9403052

  66. R. Narayan, J.S. Heyl, Astrophys. J. 574, L139 (2002), arXiv:astro-ph/0203089

  67. R. Narayan, J.E. McClintock, New Astron. Rev. 51, 733 (2008), arXiv:0803.0322 [astro-ph]

  68. R. Narayan, R. Mahadevan, J.E. Grindlay, R.G. Popham, C. Gammie, Astrophys. J. 492, 554 (1998), arXiv:astro-ph/9706112

  69. I.D. Novikov, K.S. Thorne, Astrophysics and black holes, in Black Holes, ed. by C. De Witt, B. De Witt (Gordon and Breach, New York, 1973)

    Google Scholar 

  70. K. Ohsuga, S. Mineshige, Astrophys. J. 736, 2 (2011), arXiv:1105.5474 [astro-ph.HE]

  71. R.M. O’Leary, A. Loeb, Mon. Not. R. Astron. Soc. 421, 2737 (2012), arXiv:1102.3695 [astro-ph.CO]

  72. J.A. Orosz, P.H. Hauschildt, Astron. Astrophys. 364, 265 (2000), arXiv:astro-ph/0010114

  73. J.A. Orosz, J.E. McClintock, J.P. Aufdenberg, R.A. Remillard, M.J. Reid, R. Narayan, L. Gou, Astrophys. J. 742, 84 (2011), arXiv:1106.3689 [astro-ph.HE]

  74. J.A. Orosz, C.D. Bailyn, J.E. McClintock, R.A. Remillard, Astrophys. J. 468, 380 (1996)

    Article  ADS  Google Scholar 

  75. J.A. Orosz, R.K. Jain, C.D. Bailyn, J.E. McClintock, R.A. Remillard, Astrophys. J. 499, 375 (1998), arXiv:astro-ph/9712018

  76. J.A. Orosz, J.E. McClintock, R.A. Remillard, S. Corbel, Astrophys. J. 616, 376 (2004), arXiv:astro-ph/0404343

  77. J.A. Orosz, J.F. Steiner, J.E. McClintock, M.A.P. Torres, R.A. Remillard, C.D. Bailyn, J.M. Miller, Astrophys. J. 730, 75 (2011), arXiv:1101.2499 [astro-ph.SR]

  78. J.A. Orosz et al., Astrophys. J. 555, 489 (2001), arXiv:astro-ph/0103045

  79. J.A. Orosz et al., Astrophys. J. 568, 845 (2002), arXiv:astro-ph/0112101

  80. J.A. Orosz et al., Nature 449, 872 (2007), arXiv:0710.3165 [astro-ph]

  81. J.A. Orosz et al., Astrophys. J. 697, 573 (2009), arXiv:0810.3447 [astro-ph]

  82. F. Ozel, D. Psaltis, R. Narayan, J.E. McClintock, Astrophys. J. 725, 1918 (2010), arXiv:1006.2834 [astro-ph.GA]

  83. D.N. Page, K.S. Thorne, Astrophys. J. 191, 499 (1974)

    Article  ADS  Google Scholar 

  84. M.L. Parker et al., Astrophys. J. 808, 9 (2015), arXiv:1506.00007 [astro-ph.HE]

  85. D.S. Plant, R.P. Fender, G. Ponti, T. Munoz-Darias, M. Coriat, Astron. Astrophys. 573, A120 (2015), arXiv:1309.4781 [astro-ph.HE]

  86. S.F. Portegies Zwart, S.L.W. McMillan, Astrophys. J. 576, 899 (2002), arXiv:astro-ph/0201055

  87. M. Postman et al., Astrophys. J. 756, 159 (2012), arXiv:1205.3839 [astro-ph.CO]

  88. R.A. Remillard, J.E. McClintock, Ann. Rev. Astron. Astrophys. 44, 49 (2006), arXiv:astro-ph/0606352

  89. R.A. Remillard, J.E. McClintock, C.D. Bailyn, Astrophys. J. 399, L145 (1992)

    Article  ADS  Google Scholar 

  90. R.A. Remillard, J.A. Orosz, J.E. McClintock, C.D. Bailyn, Astrophys. J. 459, 226 (1996)

    Article  ADS  Google Scholar 

  91. C.E. Rhoades, R. Ruffini, Phys. Rev. Lett. 32, 324 (1974)

    Article  ADS  Google Scholar 

  92. T. Shahbaz, Mon. Not. R. Astron. Soc. 339, 1031 (2003), arXiv:astro-ph/0211266

  93. T. Shahbaz, F. van der Hooft, J. Casares, P.A. Charles, J. van Paradijs, Mon. Not. R. Astron. Soc. 306, 89 (1999), arXiv:astro-ph/9901334

  94. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Wiley-VCH, Weinheim, 2004)

    Google Scholar 

  95. L. Song et al., Astron. J. 140, 794 (2010), arXiv:1007.3637 [astro-ph.HE]

  96. D. Steeghs, J.E. McClintock, S.G. Parsons, M.J. Reid, S. Littlefair, V.S. Dhillon, Astrophys. J. 768, 185 (2013), arXiv:1304.1808 [astro-ph.HE]

  97. F.X. Timmes, S.E. Woosley, T.A. Weaver, Astrophys. J. 457, 834 (1996), arXiv:astro-ph/9510136

  98. M.A.P. Torres, P.J. Callanan, M.R. Garcia, P. Zhao, S. Laycock, A.K.H. Kong, Astrophys. J. 612, 1026 (2004), arXiv:astro-ph/0405509

  99. D. Tournear et al., Astrophys. J. 595, 1058 (2003), arXiv:astro-ph/0303480

  100. A.K.F. Val Baker, A.J. Norton, I. Negueruela, AIP Conf. Proc. 924, 530 (2007)

    Google Scholar 

  101. E.P.J. van den Heuvel, Endpoints of stellar evolution: the incidence of stellar mass black holes in the galaxy, in Environment Observation and Climate Modelling Through International Space Projects (1992), p. 29

    Google Scholar 

  102. F. van der Hooft, M. Heemskerk, F. Alberts, J. van Paradijs, Astron. Astrophys. 329, 538 (1998), arXiv:astro-ph/9709151

  103. R.A. Wade, K. Horne, Astrophys. J. 324, 411 (1988)

    Google Scholar 

  104. R.M. Wagner, C.B. Foltz, T. Shahbaz, J. Casares, P.A. Charles, S.G. Starrfield, P.C. Hewett, Astrophys. J. 556, 42 (2001), arXiv:astro-ph/0104032

  105. N.A. Webb, T. Naylor, Z. Ioannou, P.A. Charles, T. Shahbaz, Mon. Not. R. Astron. Soc. 317, 528 (2000). arXiv:astro-ph/0004235

  106. M.G. Witte, G.J. Savonije, Astron. Astrophys. 366, 840 (2001)

    Article  ADS  Google Scholar 

  107. Y.F. Yuan, R. Narayan, M.J. Rees, Astrophys. J. 606, 1112 (2004). arXiv:astro-ph/0401549

  108. L.R. Yungelson, J.-P. Lasota, G. Nelemans, G. Dubus, E.P.J. van den Heuvel, J. Dewi, S. Portegies Zwart, Astron. Astrophys. 454, 559 (2006), arXiv:astro-ph/0604434

  109. J. Ziolkowski, Mon. Not. R. Astron. Soc. 358, 851 (2005), arXiv:astro-ph/0501102

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Bambi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bambi, C. (2017). Astrophysical Black Holes. In: Black Holes: A Laboratory for Testing Strong Gravity. Springer, Singapore. https://doi.org/10.1007/978-981-10-4524-0_4

Download citation

Publish with us

Policies and ethics