Skip to main content

Exploring Metagenomes Using Next-Generation Sequencing

  • Chapter
  • First Online:
Understanding Host-Microbiome Interactions - An Omics Approach

Abstract

Metagenomics or community genomics refers to the study of genomic DNA of any culture-independent analysis of microbial communities. Non-culturable microbial groups represent the huge majority of global microorganisms. Microbial populations present in every biological niche even humans body carry 10 times more bacterial cells and 100 times more bacterial genes than its own cells and genes. Microbes also hold the secret key for generating renewable biofuels and bioremediation. The next-generation sequencing (NGS) technology provides advantage of parallel sequencing of thousands of sequence from any samples including environmental and clinical without cultivation of it. High-throughput data generated by NGS provides information about vibrant nature of microbial populations and its effect on the atmosphere and health. So, advantages of next-generation sequencing (NGS) technology make metagenomics among the fastest growing research field. In this chapter, we tried to explain the advancement in NGS technology as well as its suitability and approaches to explore metagenomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bachall O (2009) Pac Bio sequencing. Nat Genet 41(2):147–148

    Article  Google Scholar 

  • Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenig B, Beck J, Schutz E (2010) Shotgun metagenomics of biological stains using ultra-deep DNA sequencing. Forensic Sci Int Genet 4(4):228–231. doi:10.1016/j.fsigen.2009.10.001

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC, McCombie WR (2015) Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res 25(11):1750–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685. doi:10.1128/MMBR.68.4.669-685.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedges DJ, Guettouche T, Yang S, Bademci G, Diaz A, Andersen A, Hulme WF, Linker S, Mehta A, Edwards YJ (2011) Comparison of three targeted enrichment strategies on the SOLiD sequencing platform. PLoS One 6(4):e18595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai S, Chai B, Sul WJ, Cole JR, Hashsham SA, Tiedje JM (2010) Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME J 4(2):279–285. doi:10.1038/ismej.2009.104

    Article  CAS  PubMed  Google Scholar 

  • MacLean D, Jones JD, Studholme DJ (2009) Application of ‘next-generation’ sequencing technologies to microbial genetics. Nat Rev Microbiol 7(4):287–296

    PubMed  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402. doi:10.1146/annurev.genom.9.081307.164359

    Article  CAS  PubMed  Google Scholar 

  • Merriman B, Ion Torrent R&D Team, Rothberg JM (2012) Progress in ion torrent semiconductor chip based sequencing. Electrophoresis 33(23):3397–3417

    Article  CAS  PubMed  Google Scholar 

  • Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N, Kotoulas G, Arvanitidis C, Iliopoulos I (2015) Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinform Biol Insights 9:75–88. doi:10.4137/BBI.S12462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Roossinck MJ (2012) Plant virus metagenomics: biodiversity and ecology. Annu Rev Genet 46:359–369. doi:10.1146/annurev-genet-110711-155600

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Tang H, Doak TG, Ye Y (2011) Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun metagenomics. Pac Symp Biocomput:165–176

    Google Scholar 

  • Tun HM, Brar MS, Khin N, Jun L, Hui RK, Dowd SE, Leung FC (2012) Gene-centric metagenomics analysis of feline intestinal microbiome using 454 junior pyrosequencing. J Microbiol Methods 88(3):369–376. doi:10.1016/j.mimet.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74

    Article  CAS  PubMed  Google Scholar 

  • Vikram A, Lipus D, Bibby K (2016) Metatranscriptome analysis of active microbial communities in produced water samples from the Marcellus Shale. Microb Ecol 72(3):571–581. doi:10.1007/s00248-016-0811-z

    Article  CAS  PubMed  Google Scholar 

  • Weckx S, Allemeersch J, Van der Meulen R, Vrancken G, Huys G, Vandamme P, Van Hummelen P, De Vuyst L (2011) Metatranscriptome analysis for insight into whole-ecosystem gene expression during spontaneous wheat and spelt sourdough fermentations. Appl Environ Microbiol 77(2):618–626. doi:10.1128/AEM.02028-10

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Li J, Ma F, Fang L, Xu S, Chen W, Wang ZY (2015) Rapid construction of genome map for large yellow croaker (Larimichthys crocea) by the whole-genome mapping in BioNano Genomics Irys system. BMC Genomics 16(1):670

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash G. Koringa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Thakkar, J.R., Sabara, P.H., Koringa, P.G. (2017). Exploring Metagenomes Using Next-Generation Sequencing. In: Singh, R., Kothari, R., Koringa, P., Singh, S. (eds) Understanding Host-Microbiome Interactions - An Omics Approach. Springer, Singapore. https://doi.org/10.1007/978-981-10-5050-3_3

Download citation

Publish with us

Policies and ethics