Skip to main content

Real-Time Terrain Classification for Rescue Robot Based on Extreme Learning Machine

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 710))

Included in the following conference series:

Abstract

Full autonomous robots in urban search and rescue (USAR) have to deal with complex terrains. The real-time recognition of terrains in front could effectively improve the ability of pass for rescue robots. This paper presents a real-time terrain classification system by using a 3D LIDAR on a custom designed rescue robot. Firstly, the LIDAR state estimation and point cloud registration are running in parallel to extract the test lane region. Secondly, normal aligned radial feature (NARF) is extracted and downscaled by a distance based weighting method. Finally, an extreme learning machine (ELM) classifier is designed to recognize the types of terrains. Experimental results demonstrate the effectiveness of the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://wiki.robocup.org/wiki/Robot_League.

  2. 2.

    http://nubot.trustie.com/videos.

References

  1. Osuka, K., Murphy, R., Schultz, A.C.: USAR competitions for physically situated robots. IEEE Robot. Autom. Mag. 9, 26–33 (2002)

    Article  Google Scholar 

  2. Zhang, J., Singh, S.: Low-drift and real-time LIDAR odometry and mapping. Auton. Robot. 41, 401–416 (2016)

    Article  Google Scholar 

  3. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  4. Nüchter, A., Lingemann, K., Hertzberg, J., Surmann, H.: 6D SLAM—3D mapping outdoor environments. J. Field Robot. 24, 699–722 (2007)

    Article  MATH  Google Scholar 

  5. Scherer, S., Rehder, J., Achar, S., Cover, H., Chambers, A., Nuske, S., et al.: River mapping from a flying robot: state estimation, river detection, and obstacle mapping. Auton. Robot. 33, 189–214 (2012)

    Article  Google Scholar 

  6. Radu, B.S., Rusu, B., Konolige, K., Burgard, W.: NARF: 3D range image features for object recognition (2012)

    Google Scholar 

  7. Lu, Q., Wang, X., Liu, F.: Feature extraction and the description of point cloud image based on S-NARF algorithm. Sci. Technol. Rev. 31, 45–48 (2013)

    Google Scholar 

  8. Rusu, R.B., Blodow, N., Beetz, M.: Fast Point Feature Histograms (FPFH) for 3D registration. In: IEEE International Conference on Robotics and Automation, pp. 3212–3217 (2009)

    Google Scholar 

  9. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines: and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  10. Frossyniotis, Dimitrios S., Stafylopatis, A.: A multi-SVM classification system. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 198–207. Springer, Heidelberg (2001). doi:10.1007/3-540-48219-9_20

    Chapter  Google Scholar 

  11. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42, 29–513 (2012). A Publication of the IEEE Systems Man & Cybernetics Society

    Google Scholar 

  12. Glennie, C.L., Kusari, A., Facchin, A., Glennie, C.L., Kusari, A., Facchin, A.: Calibration and stability analysis of the VLP-16 laser scanner, vol. XL-3/W4, pp. 55–60 (2016)

    Google Scholar 

  13. Murray, B.R., Li, Z., Sastry, S.: Mathematical Introduction to Robotic Manipulation (2015)

    Google Scholar 

  14. Sun, S.-L., Deng, Z.-L.: Multi-sensor optimal information fusion Kalman filter. Automatica 40, 1017–1023 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, G.B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn. Cybern. 2, 107–122 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Our work is supported by National Science Foundation of China (NO. 61503401 and NO. 61403409), China Postdoctoral Science Foundation (NO. 2014M562648), and graduate school of National University of Defense Technology. All members of the NuBot research group are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhao Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Zhong, Y., Xiao, J., Lu, H., Zhang, H. (2017). Real-Time Terrain Classification for Rescue Robot Based on Extreme Learning Machine. In: Sun, F., Liu, H., Hu, D. (eds) Cognitive Systems and Signal Processing. ICCSIP 2016. Communications in Computer and Information Science, vol 710. Springer, Singapore. https://doi.org/10.1007/978-981-10-5230-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5230-9_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5229-3

  • Online ISBN: 978-981-10-5230-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics