Skip to main content

Nanomaterial in Diverse Biological Applications

  • Chapter
  • First Online:
Metabolic Engineering for Bioactive Compounds

Abstract

Nanotechnology has revolutionized the world ranging from simple food packaging articles to medicinal therapeutics. Nano-sized objects have found application in most of the fields in sciences. Nanotechnology has been applied to create molecules possessing dimensions according to the type of application desired. Pharmaceutical industry has shown an immense interest in nanotechnology to improve pharmacologic and therapeutic properties of conventional drugs. Pharmaceutical formulations based on nanotechnology have improved the therapy strategies to treat simple as well as complex diseases. Selective targeting potential of these formulations not only deliver drug at active sites, but they also protect healthy cells from harmful effects of active drug. Nanotechnology has provided us with a lot of advantages, but along with these advantages, certain nanomaterials have been found to be toxic to human health as well as the environment. Nanotechnology-based products must be checked for their safety and toxicity profiles before launching them in market. The study of safety aspects and toxicity profile of nanomaterials is emerging as a new area of research. This chapter focuses on pharmacological applications, theranostic potential, safety aspects, and risk factors of various nanomaterial-based products. Along with this, it highlights the role of nanomaterials in bioremediation and controlling pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abakumov MA, Nukolova NV, Sokolsky-Papkov M, Shein SA, Sandalova TO, Vishwasrao HM, Grinenko NF, Gubsky IL, Abakumov AM, Kabanov AV, Chekhonin VP (2015) VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine 11:825–833. doi:10.1016/j.nano.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  • Abbad S, Zhang Z, Waddad AY, Munyendo WL, Lv H, Zhou J (2015) Chitosan-modified cationic amino acid nanoparticles as a novel oral delivery system for insulin. J Biomed Nanotechnol 11:486–499. doi:10.1166/jbn.2015.1924

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Mottaleb MM, Neumann D, Lamprecht A (2011) Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers. Eur J Pharm Biopharm 79:36–42. doi:10.1016/j.ejpb.2011.04.009

    Article  CAS  PubMed  Google Scholar 

  • Ahmad R, Mohsin M, Ahmad T, Sardar M (2015) Alpha amylase assisted synthesis of TiO(2) nanoparticles: structural characterization and application as antibacterial agents. J Hazard Mater 283:171–177. doi:10.1016/j.jhazmat.2014.08.073

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque J, Moura CC, Sarmento B, Reis S (2015) Solid lipid nanoparticles: a potential multifunctional approach towards rheumatoid arthritis theranostics. Molecules 20:11103–11118. doi:10.3390/molecules200611103

    Article  CAS  PubMed  Google Scholar 

  • Al-Kinani AA, Naughton DP, Calabrese G, Vangala A, Smith JR, Pierscionek BK, Alany RG (2015) Analysis of 2-oxothiazolidine-4-carboxylic acid by hydrophilic interaction liquid chromatography: application for ocular delivery using chitosan nanoparticles. Anal Bioanal Chem 407:2645–2650. doi:10.1007/s00216-015-8494-8

    Article  CAS  PubMed  Google Scholar 

  • Andrade AL, Fabris JD, Domingues RZ, Pereira MC (2015) Current status of magnetite-based Core Shell structures for diagnosis and therapy in oncology short running title: biomedical applications of magnetite shell structures. Curr Pharm Des 21:5417–5433. doi:10.2174/1381612821666150917093543

    Article  CAS  PubMed  Google Scholar 

  • Avanasi R, Jackson WA, Sherwin B, Mudge JF, Anderson TA (2014) C60 fullerene soil sorption, biodegradation, and plant uptake. Environ Sci Technol 48:2792–2797. doi:10.1021/es405306w

    Article  CAS  PubMed  Google Scholar 

  • Baelo A, Levato R, Julian E, Crespo A, Astola J, Gavalda J, Engel E, Mateos-Timoneda MA, Torrents E (2015) Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J Control Release 209:150–158. doi:10.1016/j.jconrel.2015.04.028

    Article  CAS  PubMed  Google Scholar 

  • Baiget M, Constanti M, Lopez MT, Medina F (2013) Uranium removal from a contaminated effluent using a combined microbial and nanoparticle system. New Biotechnol 30:788–792. doi:10.1016/j.nbt.2013.05.003

    Article  CAS  Google Scholar 

  • Bakalova R, Zhelev Z, Nikolova B, Murayama S, Lazarova D, Tsoneva I, Aoki I (2015) Lymph node mapping using quantum dot-labeled polymersomes. Gen Physiol Biophys 34:393–398. doi:10.4149/gpb_2015007

    CAS  PubMed  Google Scholar 

  • Baradaran S, Moghaddam E, Nasiri-Tabrizi B, Basirun WJ, Mehrali M, Sookhakian M, Hamdi M, Alias Y (2015) Characterization of nickel-doped biphasic calcium phosphate/graphene nanoplatelet composites for biomedical application. Mater Sci Eng C Mater Biol Appl 49:656–668. doi:10.1016/j.msec.2015.01.050

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya K, Mukherjee SP, Gallud A, Burkert SC, Bistarelli S, Bellucci S, Bottini M, Star A, Fadeel B (2016) Biological interactions of carbon-based nanomaterials: from coronation to degradation. Nanomedicine 12:333–351. doi:10.1016/j.nano.2015.11.011

    Article  CAS  PubMed  Google Scholar 

  • Bianco A, Muller S (2016) Nanomaterials, autophagy, and lupus disease. Chem Med Chem 11:166–174. doi:10.1002/cmdc.201500233

    Article  CAS  PubMed  Google Scholar 

  • Biggs MJ, Richards RG, Gadegaard N, Wilkinson CD, Oreffo RO, Dalby MJ (2009) The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials 30:5094–5103. doi:10.1016/j.biomaterials.2009.05.049

    Article  CAS  PubMed  Google Scholar 

  • Biswas B, Sarkar B, Rusmin R, Naidu R (2015) Bioremediation of PAHs and VOCs: advances in clay mineral-microbial interaction. Environ Int 85:168–181. doi:10.1016/j.envint.2015.09.017

    Article  CAS  PubMed  Google Scholar 

  • Boakye CH, Shah PP, Doddapaneni R, Patel AR, Safe S, Singh M (2015) Enhanced percutaneous delivery of 1,1-bis(3′-indolyl)-1-(p-chlorophenyl) methane for skin cancer chemoprevention. J Biomed nanotech 11:1269–1128. doi:10.1166/jbn.2015.2064

    Article  CAS  Google Scholar 

  • Bokare V, Murugesan K, Kim JH, Kim EJ, Chang YS (2012) Integrated hybrid treatment for the remediation of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Sci Total Environ 435-436:563–566. doi:10.1016/j.scitotenv.2012.07.079

    Article  CAS  PubMed  Google Scholar 

  • Branca M, Pelletier F, Cottin B, Ciuculescu D, Lin CC, Serra R, Mattei JG, Casanove MJ, Tan R, Respaud M, Amiens C (2014) Design of FeBi nanoparticles for imaging applications. Faraday Discuss 175:97–111. doi:10.1039/c4fd00105b

    Article  CAS  PubMed  Google Scholar 

  • Brouwer D (2010) Exposure to manufactured nanoparticles in different workplaces. Toxicology 269:120–127. doi:10.1016/j.tox.2009.11.017

    Article  CAS  PubMed  Google Scholar 

  • Bruinink A, Bitar M, Pleskova M, Wick P, Krug HF, Maniura-Weber K (2014) Addition of nanoscaled bioinspired surface features: a revolution for bone related implants and scaffolds? J Biomed Mater Res A 102:275–294. doi:10.1002/jbm.a.34691

    Article  PubMed  CAS  Google Scholar 

  • Bulbul G, Hayat A, Andreescu S (2015) Portable nanoparticle-based sensors for food safety assessment. Sensors (Basel) 15:30736–30758. doi:10.3390/s151229826

    Article  CAS  Google Scholar 

  • Cao H, McHugh K, Chew SY, Anderson JM (2010) The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. J Biomed Mater Res A 93:1151–1159. doi:10.1002/jbm.a.32609

    PubMed  Google Scholar 

  • Cao X, Shi C, Lu W, Zhao H, Wang M, Tong W, Dong J, Han X, Qian W (2015) Synthesis of au nanostars and their application as surface enhanced Raman scattering-activity tags inside living cells. J Nanosci Nanotechnol 15:4829–4836. doi:10.1166/jnn.2015.9828

    Article  CAS  PubMed  Google Scholar 

  • Cassidy JW, Roberts JN, Smith CA, Robertson M, White K, Biggs MJ, Oreffo RO, Dalby MJ (2014) Osteogenic lineage restriction by osteoprogenitors cultured on nanometric grooved surfaces: the role of focal adhesion maturation. Acta Biomater 10:651–660. doi:10.1016/j.actbio.2013.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalli R, Argenziano M, Vigna E, Giustetto P, Torres E, Aime S, Terreno E (2015) Preparation and in vitro characterization of chitosan nanobubbles as theranostic agents. Colloids Surf B Biointerfaces 129:39–46. doi:10.1016/j.colsurfb.2015.03.023

    Article  CAS  PubMed  Google Scholar 

  • Chae SR, Hunt DE, Ikuma K, Yang S, Cho J, Gunsch CK, Liu J, Wiesner MR (2014) Aging of fullerene C(6)(0) nanoparticle suspensions in the presence of microbes. Water Res 65:282–289. doi:10.1016/j.watres.2014.07.038

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury K, Kumar V, Kandasamy J, RoyChoudhury S (2014) Regenerative nanomedicine: current perspectives and future directions. Int J Nanomed 9:4153–4167. doi:10.2147/IJN.S45332

    Article  Google Scholar 

  • Che HL, Lee HJ, Uto K, Ebara M, Kim WJ, Aoyagi T, Park IK (2015) Simultaneous drug and gene delivery from the biodegradable poly(epsilon-caprolactone) nanofibers for the treatment of liver cancer. J Nanosci Nanotechnol 15:7971–7975. doi:10.1166/jnn.2015.11233

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Guan S, Zeng G, Li X, Chen A, Shang C, Zhou Y, Li H, He J (2013) Cadmium removal and 2,4-dichlorophenol degradation by immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles. Appl Microbiol Biotechnol 97:3149–3157. doi:10.1007/s00253-012-4121-1

    Article  CAS  PubMed  Google Scholar 

  • Chen GJ, Hsu C, Ke JH, Wang LF (2015) Imaging and chemotherapeutic comparisons of iron oxide nanoparticles chemically and physically coated with poly(ethylene glycol)-b-poly(epsilon-caprolactone)-g-poly(acrylic acid). J Biomed Nanotechnol 11:951–963. doi:10.1166/jbn.2015.2012

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Su Y, Zheng X, Chen H, Yang H (2012a) Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure. Water Res 46:4379–4386. doi:10.1016/j.watres.2012.05.042

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang D, Zhu X, Zheng X, Feng L (2012b) Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process. Environ Sci Technol 46:12452–12458. doi:10.1021/es302646q

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Gong H, Zhu W, Liu J, Wang X, Liu G, Liu Z (2014) PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. Biomaterials 35:9844–9852. doi:10.1016/j.biomaterials.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  • Chhonker YS, Prasad YD, Chandasana H, Vishvkarma A, Mitra K, Shukla PK, Bhatta RS (2015) Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int J Biol Macromol 72:1451–1458. doi:10.1016/j.ijbiomac.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  • Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316. doi:10.1158/1078-0432.CCR-07-1441

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Tripathi A, Singh D (2014) Smart nanomaterials for biomedics. J Biomed Nanotechnol 10:3162–3188. doi:10.1166/jbn.2014.1933

    Article  CAS  PubMed  Google Scholar 

  • Chow EK, Pierstorff E, Cheng G, Ho D (2008) Copolymeric nanofilm platform for controlled and localized therapeutic delivery. ACS Nano 2:33–40. doi:10.1021/nn7000917

    Article  CAS  PubMed  Google Scholar 

  • Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK (2015) Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine (Lond) 10:321–341. doi:10.2217/nnm.14.171

    Article  CAS  Google Scholar 

  • Cooper DL, Conder CM, Harirforoosh S (2014) Nanoparticles in drug delivery: mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity. Expert Opin Drug Deliv 11:1661–1680. doi:10.1517/17425247.2014.938046

    Article  CAS  PubMed  Google Scholar 

  • Cywinska MA, Grudzinski IP (2012) Modern toxicology of magnetic nanomaterials. Ann Nat. Occup Hyg 63:247–256. doi:10.3390/nano4020505

    CAS  Google Scholar 

  • da Silveira WL, Damasceno BP, Ferreira LF, Ribeiro IL, Silva KS, Silva AL, Giannini MJ, da Silva-Junior AA, de Oliveira AG (2015) Socrates Tabosa do Egito E. Development and characterization of a microemulsion system containing Amphotericin B with potential ocular applications. Curr Neuropharmacol 8:8. doi: 10.2174/1570159x14666151109110734

  • Dandekar PP, Jain R, Patil S, Dhumal R, Tiwari D, Sharma S, Vanage G, Patravale V (2010) Curcumin-loaded hydrogel nanoparticles: application in anti-malarial therapy and toxicological evaluation. J Pharm Sci 99:4992–5010. doi:10.1002/jps.22191

    Article  CAS  PubMed  Google Scholar 

  • Das M, Ansari KM, Tripathi A, Dwivedi PD (2011) Need for safety of nanoparticles used in food industry. J Biomed Nanotechnol 7:13–14. doi:10.1166/jbn.2011.1176

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199. doi:10.1021/la900585p

    Article  CAS  PubMed  Google Scholar 

  • Dorkhan M, Yucel-Lindberg T, Hall J, Svensater G, Davies JR (2014) Adherence of human oral keratinocytes and gingival fibroblasts to nano-structured titanium surfaces. BMC Oral Health 14:75. doi:10.1186/1472-6831-14-75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dosio F, Arpicco S, Stella B, Fattal E (2016) Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev 97:204–236. doi:10.1016/j.addr.2015.11.011

    Article  CAS  PubMed  Google Scholar 

  • Du C, Narayanan K, Leong MF, Wan AC (2014) Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering. Biomaterials 35:6006–6014. doi:10.1016/j.biomaterials.2014.04.011

    Article  CAS  PubMed  Google Scholar 

  • Eduok S, Martin B, Villa R, Nocker A, Jefferson B, Coulon F (2013) Evaluation of engineered nanoparticle toxic effect on wastewater microorganisms: current status and challenges. Ecotoxicol Environ Saf 95:1–9. doi:10.1016/j.ecoenv.2013.05.022

    Article  CAS  PubMed  Google Scholar 

  • Fanizza E, Iacobazzi RM, Laquintana V, Valente G, Caliandro G, Striccoli M, Agostiano A, Cutrignelli A, Lopedota A, Curri ML, Franco M, Depalo N, Denora N (2016) Highly selective luminescent nanostructures for mitochondrial imaging and targeting. Nanoscale 8:3350–3361. doi:10.1039/c5nr08139d

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Fernandez A, Manchanda R, Carvajal DA, Lei T, Srinivasan S, McGoron AJ (2014) Covalent IR820-PEG-diamine nanoconjugates for theranostic applications in cancer. Int J Nanomed 9:4631–4648. doi:10.2147/IJN.S69550

    Article  CAS  Google Scholar 

  • Figueiro F, de Oliveira CP, Rockenbach L, Mendes FB, Bergamin LS, Jandrey EH, Edelweiss MI, Guterres SS, Pohlmann AR, Battastini AM (2015) Pharmacological improvement and preclinical evaluation of methotrexate-loaded lipid-core nanocapsules in a glioblastoma model. J Biomed Nanotechnol 11:1808–1818. doi:10.1166/jbn.2015.2125

    Article  CAS  PubMed  Google Scholar 

  • Frangville C, Rutkevicius M, Richter AP, Velev OD, Stoyanov SD, Paunov VN (2012) Fabrication of environmentally biodegradable lignin nanoparticles. Chem phys chem 13:4235–4243. doi:10.1002/cphc.201200537

    Article  CAS  PubMed  Google Scholar 

  • Froggett SJ, Clancy SF, Boverhof DR, Canady RA (2014) A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Part Fibre Toxicol 11:17. doi:10.1186/1743-8977-11-17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fruijtier-Polloth C (2012) The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology 294:61–79. doi:10.1016/j.tox.2012.02.001

    Article  PubMed  CAS  Google Scholar 

  • Gand A, Hindie M, Chacon D, Van Tassel PR, Pauthe E (2014) Nanotemplated polyelectrolyte films as porous biomolecular delivery systems. Application to the growth factor BMP-2. Biomatter 4:e28823. doi:10.4161/biom.28823

    Article  PubMed  PubMed Central  Google Scholar 

  • Garciafigueroa Y, Trucco M, Giannoukakis N (2015) A brief glimpse over the horizon for type 1 diabetes nanotherapeutics. Clin Immunol 160:36–45. doi:10.1016/j.clim.2015.03.016

    Article  CAS  PubMed  Google Scholar 

  • Getts DR, Shea LD, Miller SD, King NJ (2015) Harnessing nanoparticles for immune modulation. Trends Immunol 36:419–427. doi:10.1016/j.it.2015.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gholipour-Kanani A, Bahrami SH, Rabbani S (2016) Effect of novel blend nanofibrous scaffolds on diabetic wounds healing. IET Nanobiotechnol 10:1–7. doi:10.1049/iet-nbt.2014.0066

    Article  PubMed  Google Scholar 

  • Gizdavic-Nikolaidis M, Ray S, Bennett JR, Easteal AJ, Cooney RP (2010) Electrospun functionalized polyaniline copolymer-based nanofibers with potential application in tissue engineering. Macromol Biosci 10:1424–1431. doi:10.1002/mabi.201000237

    Article  CAS  PubMed  Google Scholar 

  • Godwin H, Nameth C, Avery D, Bergeson LL, Bernard D, Beryt E, Boyes W, Brown S, Clippinger AJ, Cohen Y, Doa M, Hendren CO, Holden P, Houck K, Kane AB, Klaessig F, Kodas T, Landsiedel R, Lynch I, Malloy T, Miller MB, Muller J, Oberdorster G, Petersen EJ, Pleus RC, Sayre P, Stone V, Sullivan KM, Tentschert J, Wallis P, Nel AE (2015) Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. ACS Nano 9:3409–3417. doi:10.1021/acsnano.5b00941

    Article  CAS  PubMed  Google Scholar 

  • Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, Cronin MT (2015) Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale 7:2154–2198. doi:10.1039/c4nr06670g

    Article  CAS  PubMed  Google Scholar 

  • Gouveia VM, Lima SA, Nunes C, Reis S (2015) Non-biologic Nanodelivery therapies for rheumatoid arthritis. J Biomed Nanotechnol 11:1701–1721. doi:10.1166/jbn.2015.2159

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Ma M, Chang D, Zhang Q, Zhang C, Yue Y, Liu J, Wang S, Jiang T (2015) Poly-alpha,beta-polyasparthydrazide-based nanogels for potential oral delivery of paclitaxel: In vitro and in vivo properties. J Biomed Nanotechnol 11:2231–2242. doi:10.1166/jbn.2015.2118

    Article  CAS  PubMed  Google Scholar 

  • Halley PD, Lucas CR, McWilliams EM, Webber MJ, Patton RA, Kural C, Lucas DM, Byrd JC, Castro CE (2016) Daunorubicin-loaded DNA origami nanostructures circumvent drug-resistance mechanisms in a leukemia model. Small 12:308–320. doi:10.1002/smll.201502118

    Article  CAS  PubMed  Google Scholar 

  • Hamori M, Shimizu Y, Yoshida K, Fukushima K, Sugioka N, Nishimura A, Naruhashi K, Shibata N (2015) Preparation of methacrylic acid copolymer S nano-fibers using a solvent-based electrospinning method and their application in pharmaceutical formulations. Cheml Pharma Bull 63:81–87. doi:10.1248/cpb.c14-00563

    Article  CAS  Google Scholar 

  • Hashi CK, Zhu Y, Yang GY, Young WL, Hsiao BS, Wang K, Chu B, Li S (2007) Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci U S A 104:11915–11920. doi:10.1073/pnas.0704581104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hass JL, Garrison EM, Wicher SA, Knapp B, Bridges N, McLlroy D, Arrizabalaga G (2012) Synthetic osteogenic extracellular matrix formed by coated silicon dioxide nanosprings. J Nanobiotechnology 10:6. doi:10.1186/1477-3155-10-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennebel T, Van Nevel S, Verschuere S, De Corte S, De Gusseme B, Cuvelier C, Fitts JP, van der Lelie D, Boon N, Verstraete W (2011) Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen. Appl Microbiol Biotechnol 91:1435–1445. doi:10.1007/s00253-011-3329-9

    Article  CAS  PubMed  Google Scholar 

  • Hirata E, Menard-Moyon C, Venturelli E, Takita H, Watari F, Bianco A, Yokoyama A (2013) Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation. Nanotechnology 24:435101. doi:10.1088/0957-4484/24/43/435101

    Article  PubMed  CAS  Google Scholar 

  • Ho D (2015) Nanodiamond-based chemotherapy and imaging. Cancer Treat Res 166:85–102. doi:10.1007/978-3-319-16555-4_4

    Article  CAS  PubMed  Google Scholar 

  • Hommes G, Gasser CA, Howald CB, Goers R, Schlosser D, Shahgaldian P, Corvini PF (2012) Production of a robust nanobiocatalyst for municipal wastewater treatment. Bioresour Technol 115:8–15. doi:10.1016/j.biortech.2011.11.129

    Article  CAS  PubMed  Google Scholar 

  • Hosny KM, Banjar ZM, Hariri AH, Hassan AH (2015) Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia. Drug Des Devel Ther 9:313–320. doi:10.2147/DDDT.S77702

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou L, Zhang H, Wang Y, Wang L, Yang X, Zhang Z (2015) Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent. Int J Nanomed 10:4507–4520. doi:10.2147/IJN.S78563

    CAS  Google Scholar 

  • James R, Toti US, Laurencin CT, Kumbar SG (2011) Electrospun nanofibrous scaffolds for engineering soft connective tissues. Methods Mol Biol 726:243–258. doi:10.1007/978-1-61779-052-2_16

    Article  CAS  PubMed  Google Scholar 

  • Jeliazkova N, Chomenidis C, Doganis P, Fadeel B, Grafstrom R, Hardy B, Hastings J, Hegi M, Jeliazkov V, Kochev N, Kohonen P, Munteanu CR, Sarimveis H, Smeets B, Sopasakis P, Tsiliki G, Vorgrimmler D, Willighagen E (2015) The eNanoMapper database for nanomaterial safety information. Beilstein J Nanotechnol 6:1609–1634. doi:10.3762/bjnano.6.165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong JH, Kim JJ, Bak DH, KS Y, Lee JH, Lee NS, Jeong YG, Kim DK, Han SY (2015) Protective effects of Indole-3-Carbinol-loaded poly(lactic-co-glycolic acid) nanoparticles against glutamate-induced neurotoxicity. J Nanosci Nanotechnol 15:7922–7928. doi:10.1166/jnn.2015.11219

    Article  CAS  PubMed  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119. doi:10.1016/j.tox.2009.08.016

    Article  CAS  PubMed  Google Scholar 

  • Kalishwaralal K, Barathmanikanth S, Pandian SR, Deepak V, Gurunathan S (2010) Silver nano—a trove for retinal therapies. J Control Release 145:76–90. doi:10.1016/j.jconrel.2010.03.022

    Article  CAS  PubMed  Google Scholar 

  • Kapishon V, Allison S, Whitney RA, Cunningham MF, Szewczuk MR, Neufeld RJ (2016) Oseltamivir-conjugated polymeric micelles prepared by RAFT living radical polymerization as a new active tumor targeting drug delivery platform. Biomater Sci 4:511–521. doi:10.1039/c5bm00519a

    Article  CAS  PubMed  Google Scholar 

  • Karim MM, Alam SM, Lee SH (2008) Application of a lanthanide composite nanoparticle-sensitized luminescence method for the determination of salicylic acid in pharmaceutical formulations and human plasma. Lumin J Biol Chem Lumin 23:417–423. doi:10.1002/bio.1072

    Article  CAS  Google Scholar 

  • Karthikeyan K, Guhathakarta S, Rajaram R, Korrapati PS (2012) Electrospun zein/eudragit nanofibers based dual drug delivery system for the simultaneous delivery of aceclofenac and pantoprazole. Int J Pharm 438:117–122. doi:10.1016/j.ijpharm.2012.07.075

    Article  CAS  PubMed  Google Scholar 

  • Kateb B, Van Handel M, Zhang L, Bronikowski MJ, Manohara H, Badie B (2007) Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors. Neuro Image 37(Suppl 1):S9–17. doi:10.1016/j.neuroimage.2007.03.078

    PubMed  Google Scholar 

  • Kharangate-Lad A, Pereira F, Fernandes J, Bhosle S (2016) Studies on the effects of zerovalent iron nanoparticles on bacteria from the mangrove ecosystem. Environ Sci Pollut Res Int 23:927–931. doi:10.1007/s11356-015-5588-y

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Hong B, Lee J, Kim SE, Kang SS, Kim YH, Tae G (2012a) Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects. Biomacromolecules 13:2287–2298. doi:10.1021/bm3005353

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Kshitiz, Smith RR, Kim P, Ahn EH, Kim HN, Marban E, Suh KY, Levchenko A (2012b) Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration. Integr Biol (Camb) 4:1019–1033. doi:10.1039/c2ib20067h

    Article  CAS  Google Scholar 

  • Kim YR, Park SH, Lee JK, Jeong J, Kim JH, Meang EH, Yoon TH, Lim ST, JM O, An SS, Kim MK (2014) Organization of research team for nano-associated safety assessment in effort to study nanotoxicology of zinc oxide and silica nanoparticles. Int J Nanomed 9(Suppl 2):3–10. doi:10.2147/IJN.S57915

    CAS  Google Scholar 

  • Kitture R, Chordiya K, Gaware S, Ghosh S, More PA, Kulkarni P, Chopade BA, Kale SN (2015) ZnO nanoparticles-red sandalwood conjugate: a promising anti-diabetic agent. J Nanosci Nanotechnol 15:4046–4051. doi:10.1166/jnn.2015.10323

    Article  CAS  PubMed  Google Scholar 

  • Korsmeyer R (2016) Critical questions in development of targeted nanoparticle therapeutics. Regen Biomater 3:143–147. doi:10.1093/rb/rbw011

    Article  PubMed  PubMed Central  Google Scholar 

  • Kriparamanan R, Aswath P, Zhou A, Tang L, Nguyen KT (2006) Nanotopography: cellular responses to nanostructured materials. J Nanosci Nanotechnol 6:1905–1919. doi:10.1166/jnn.2006.330

    Article  CAS  PubMed  Google Scholar 

  • Krupa AN, Vimala R (2016) Evaluation of tetraethoxysilane (TEOS) sol-gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling. Mater Sci Eng C Mater Biol Appl 61:728–735. doi:10.1016/j.msec.2016.01.013

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Palazzolo S, Bayda S, Corona G, Toffoli G, Rizzolio F (2016) DNA nanotechnology for cancer therapy. Theranostics 6:710–725. doi:10.7150/thno.14203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar CG, Poornachandra Y (2015) Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles. Colloids Surf B Biointerfaces 125:110–119. doi:10.1016/j.colsurfb.2014.11.025

    Article  CAS  PubMed  Google Scholar 

  • Lavenus S, Trichet V, Le Chevalier S, Hoornaert A, Louarn G, Layrolle P (2012) Cell differentiation and osseointegration influenced by nanoscale anodized titanium surfaces. Nanomedicine (Lond) 7:967–980. doi:10.2217/nnm.11.181

    Article  CAS  Google Scholar 

  • Lee H, MK Y, Park S, Moon S, Min JJ, Jeong YY, Kang HW, Jon S (2007) Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J Am Chem Soc 129:12739–12745. doi:10.1021/ja072210i

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhao T, Sun L, Aifantis KE, Fan Y, Feng Q, Cui F, Watari F (2016) The applications of conductive nanomaterials in the biomedical field. J Biomed Mater Res A 104:322–339. doi:10.1002/jbm.a.35537

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Wang D, Wang J, Mendoza C (2011) Effect of ZnO particles on activated sludge: role of particle dissolution. Sci Total Environ 409:2852–2857. doi:10.1016/j.scitotenv.2011.03.022

    Article  CAS  PubMed  Google Scholar 

  • Mahmood S, Taher M, Mandal UK (2014) Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application. Int J Nanomed 9:4331–4346. doi:10.2147/IJN.S65408

    Google Scholar 

  • Martinez Avila H, Feldmann EM, Pleumeekers MM, Nimeskern L, Kuo W, de Jong WC, Schwarz S, Muller R, Hendriks J, Rotter N, van Osch GJ, Stok KS, Gatenholm P (2015) Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials 44:122–133. doi:10.1016/j.biomaterials.2014.12.025

    Article  CAS  PubMed  Google Scholar 

  • MedlinePlus Metabolic disorders. https://www.nlm.nih.gov/. Retrieved 27 July 2015

  • Musee N (2011) Nanowastes and the environment: potential new waste management paradigm. Environ Int 37:112–128. doi:10.1016/j.envint.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  • Nel AE (2013) Implementation of alternative test strategies for the safety assessment of engineered nanomaterials. J Intern Med 274(6):561–577. doi:10.1111/joim.12109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouf SA, El-Adly AA, Mohamed AA (2015) Inhibitory effect of silver nanoparticles mediated by atmospheric pressure air cold plasma jet against dermatophyte fungi. J Med Microbiol 64:1151–1161. doi:10.1099/jmm.0.000133

    Article  CAS  PubMed  Google Scholar 

  • Pachioni-Vasconcelos Jde A, Lopes AM, Apolinario AC, Valenzuela-Oses JK, Costa JS, Nascimento Lde O, Pessoa A, Barbosa LR, Rangel-Yagui Cde O (2016) Nanostructures for protein drug delivery. Biomater Sci 4:205–218. doi:10.1039/c5bm00360a

    Article  PubMed  Google Scholar 

  • Pang Y, Zeng GM, Tang L, Zhang Y, Liu YY, Lei XX, MS W, Li Z, Liu C (2011) Cr(VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes. Bioresour Technol 102:10733–10736. doi:10.1016/j.biortech.2011.08.078

    Article  CAS  PubMed  Google Scholar 

  • Pasricha A, Jangra SL, Singh N, Dilbaghi N, Sood KN, Arora K, Pasricha R (2012) Comparative study of leaching of silver nanoparticles from fabric and effective effluent treatment. J Environ Sci (China) 24:852–859. doi:10.1016/S1001-0742(11)60849-8

    Article  CAS  Google Scholar 

  • Peng Q, Mu H (2016) The potential of protein-nanomaterial interaction for advanced drug delivery. J Control Release 225:121–132. doi:10.1016/j.jconrel.2016.01.041

    Article  CAS  PubMed  Google Scholar 

  • Pereira DI, Bruggraber SF, Faria N, Poots LK, Tagmount MA, Aslam MF, Frazer DM, Vulpe CD, Anderson GJ, Powell JJ (2014) Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans. Nanomedicine 10:1877–1886. doi:10.1016/j.nano.2014.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry JL, Kai MP, Reuter KG, Bowerman C, Christopher Luft J, DeSimone JM (2015) Calibration-quality cancer nanotherapeutics. Cancer Treat Res 166:275–291. doi:10.1007/978-3-319-16555-4_12

    Article  CAS  PubMed  Google Scholar 

  • Pippa N, Pispas S, Demetzos C (2016) Polymer self-assembled nanostructures as innovative drug Nanocarrier platforms. Curr Pharm Des 22:2788–2795. doi:10.2174/1381612822666160217141232

    Article  CAS  PubMed  Google Scholar 

  • Pooja D, Tunki L, Kulhari H, Reddy BB, Sistla R (2015) Characterization, biorecognitive activity and stability of WGA grafted lipid nanostructures for the controlled delivery of rifampicin. Chem Phys Lipids 193:11–17. doi:10.1016/j.chemphyslip.2015.09.008

    Article  CAS  PubMed  Google Scholar 

  • Poulose S, Panda T, Nair PP, Theodore T (2014) Biosynthesis of silver nanoparticles. J Nanosci Nanotechnol 14:2038–2049. doi:10.1166/jnn.2014.9019

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Zhou X, Zhang Y, Zhang W, Chen J (2013) Performance and properties of nanoscale calcium peroxide for toluene removal. Chemosphere 9:717–723. doi:10.1016/j.chemosphere.2013.01.049

    Article  CAS  Google Scholar 

  • Rai M, Ingle AP, Gade A, Duran N (2015) Synthesis of silver nanoparticles by Phoma gardeniae and in vitro evaluation of their efficacy against human disease-causing bacteria and fungi. IET Nanobiotechnol 9:71–75. doi:10.1049/iet-nbt.2014.0013

    Article  PubMed  Google Scholar 

  • Ruiz de Garibay AP, Solinis MA, del Pozo-Rodriguez A, Apaolaza PS, Shen JS, Rodriguez-Gascon A (2015) Solid lipid nanoparticles as non-viral vectors for Gene transfection in a cell model of Fabry disease. J Biomed Nanotechnol 11:500–511. doi:10.1166/jbn.2015.1968

    Article  CAS  PubMed  Google Scholar 

  • Sahebkar A, Badiee A, Hatamipour M, Ghayour-Mobarhan M, Jaafari MR (2015) Apolipoprotein B-100-targeted negatively charged nanoliposomes for the treatment of dyslipidemia. Colloids Surf B Biointerfaces 129:71–78. doi:10.1016/j.colsurfb.2015.03.012

    Article  CAS  PubMed  Google Scholar 

  • Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, Reidl J, Schild S (2015) Antibacterial activity of silver and zinc nanoparticles against vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol 305:85–95. doi:10.1016/j.ijmm.2014.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvadori MR, Ando RA, Oller Do Nascimento CA, Correa B (2014) Bioremediation from wastewater and extracellular synthesis of copper nanoparticles by the fungus Trichoderma koningiopsis. J Environ Sci Health A Tox Hazard Subst Environ Eng 49:1286–1295. doi:10.1080/10934529.2014.910067

    Article  CAS  PubMed  Google Scholar 

  • Seo H, Roh Y (2015) Biotransformation and its application: biogenic Nano-catalyst and metal-reducing-bacteria for remediation of Cr(VI)-contaminated water. J Nanosci Nanotechnol 15:5649–5652. doi:10.1166/jnn.2015.10446

    Article  CAS  PubMed  Google Scholar 

  • Serra P, Santamaria P (2015) Nanoparticle-based autoimmune disease therapy. Clin Immunol 160:3–13. doi:10.1016/j.clim.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  • Shavi GV, Nayak UY, Maliyakkal N, Deshpande PB, Raghavendra R, Kumar AR, Reddya MS, Udupa N, Shrawan B (2015) Nanomedicine of anastrozole for breast cancer: physicochemical evaluation, in vitro cytotoxicity on BT-549 and MCF-7 cell lines and preclinical study on rat model. Life Sci 141:143–155. doi:10.1016/j.lfs.2015.09.021

    Article  CAS  PubMed  Google Scholar 

  • Singh MK, Gracio J, LeDuc P, Goncalves PP, Marques PA, Goncalves G, Marques F, Silva VS, Capela e Silva F, Reis J, Potes J, Sousa A (2010) Integrated biomimetic carbon nanotube composites for in vivo systems. Nanoscale 2:2855–2863. doi:10.1039/c0nr00237b

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Somani VK, Aggarwal S, Bhatnagar R (2015) PLGA (85:15) nanoparticle based delivery of rL7/L12 ribosomal protein in mice protects against Brucella abortus 544 infection: a promising alternate to traditional adjuvants. Mol Immunol 68:272–279. doi:10.1016/j.molimm.2015.09.011

    Article  CAS  PubMed  Google Scholar 

  • Sinha A, Singh VN, Mehta BR, Khare SK (2011) Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by bacillus sp. cells simultaneous to its bioremediation. J Hazard Mater 192:620–627. doi:10.1016/j.jhazmat.2011.05.103

    Article  CAS  PubMed  Google Scholar 

  • Sun EY, Kim Y, Park B, Roh Y (2011) Environmental application of nanomaterials and metal-reducing bacteria to remediate arsenic-contaminated groundwater. J Nanosci Nanotechnol 11:1589–1592. doi:10.1166/jnn.2011.3411

    Article  CAS  PubMed  Google Scholar 

  • Tong HW, Mutlu BR, Wackett LP, Aksan A (2014) Manufacturing of bioreactive nanofibers for bioremediation. Biotechnol Bioeng 111:1483–1493. doi:10.1002/bit.25208

    Article  CAS  PubMed  Google Scholar 

  • Tuin BJ, Geerts R, Westerink JB, van Ginkel CG (2006) Pretreatment and biotreatment of saline industrial wastewaters. Water Sci Technol 53:17–25. doi:10.2166/wst.2006.072

    Article  CAS  PubMed  Google Scholar 

  • Tuo Y, Liu G, Zhou J, Wang A, Wang J, Jin R, Lv H (2013) Microbial formation of palladium nanoparticles by Geobacter sulfurreducens for chromate reduction. Bioresour Technol 133:606–611. doi:10.1016/j.biortech.2013.02.016

    Article  CAS  PubMed  Google Scholar 

  • Veetil JV, Ye K (2009) Tailored carbon nanotubes for tissue engineering applications. Biotechnol Prog 25:709–721. doi:10.1002/btpr.165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Abad D, Kickhoefer VA, Rome LH, Mahendra S (2015a) Vault nanoparticles packaged with enzymes as an efficient pollutant biodegradation technology. ACS Nano 9:10931–10940. doi:10.1021/acsnano.5b04073

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Kim B, Wunder SL (2015b) Nanoparticle-supported lipid bilayers as an in situ remediation strategy for hydrophobic organic contaminants in soils. Environ Sci Technol 49:529–536. doi:10.1021/es504832n

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhao C, Zhao P, Dou P, Ding Y, Xu P (2009) Gellan gel beads containing magnetic nanoparticles: an effective biosorbent for the removal of heavy metals from aqueous system. Bioresour Technol 100:2301–2304. doi:10.1016/j.biortech.2008.10.042

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhou M, Jin Z, Li T (2010) Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation. J Hazard Mater 173:724–730. doi:10.1016/j.jhazmat.2009.08.145

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Bu X, Dou L, Fang L, Shen Q (2015a) Co-delivery of Docetaxel and Berbamine by Chitosan/ Sulfobutylether-β-Cyclodextrin Nanoparticles for Enhancing Bioavailability and Anticancer Activities. J Biomed Nanotechnol 11(10):1847–57

    Google Scholar 

  • Wu Y, Wang Z, Liu G, Zeng X, Wang X, Gao Y, Jiang L, Shi X, Tao W, Huang L, Mei L (2015b) Novel Simvastatin-Loaded Nanoparticles based on Cholic Acid-Core Star-Shaped PLGA for Breast Cancer Treatment. J Biomed Nanotechnol 11(7):1247–60

    Google Scholar 

  • Xu H, Zhang Y, Jiang Q, Reddy N, Yang Y (2013) Biodegradable hollow zein nanoparticles for removal of reactive dyes from wastewater. J Environ Manag 125:33–40. doi:10.1016/j.jenvman.2013.03.050

    Article  CAS  Google Scholar 

  • Yang R, Qi J, Zhang J, Wang F, Fan L (2015) Effects of Paris polyphylla saponin VII plus silica nano composite on ovarian cancer drug resistance in vitro. Zhonghua Yi Xue Za Zhi 95(23):1859–61.

    Google Scholar 

  • Yen A, Zhang K, Daneshgaran G, Kim HJ, Ho D (2016) Chemopreventive Nanodiamond Platform for Oral Cancer Treatment. J Calif Dent Assoc 44(2):121–7.

    Google Scholar 

  • Zaidi SA, Shin JH (2016) Recent developments in nanostructure based electrochemical glucose sensors. Talanta 149:30–42. doi:10.1016/j.talanta.2015.11.033

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, FG W, Liu P, Wang HY, Gu N, Chen Z (2015) Synthesis of ultrastable and multifunctional gold nanoclusters with enhanced fluorescence and potential anticancer drug delivery application. J Colloid Interf Sci 455:6–15. doi:10.1016/j.jcis.2015.05.029

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu J, Tang Y, Chen X, Yang Y (2009) The preparation and application of pulmonary surfactant nanoparticles as absorption enhancers in insulin dry powder delivery. Drug Dev Ind Pharm 35:1059–1065. doi:10.1080/03639040902769628

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zhuang J, Gao L, Zhang Y, Gu N, Feng J, Yang D, Zhu J, Yan X (2008) Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 73:1524–1528. doi:10.1016/j.chemosphere.2008.05.050

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Huang H, Su Y, Wei Y, Chen Y (2015) Long-term effects of engineered nanoparticles on enzyme activity and functional bacteria in wastewater treatment plants. Water Sci Technol 72:99–105. doi:10.2166/wst.2015.194

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Singh Bisht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sharma, D., Shrivastava, R., Bisht, G.S. (2017). Nanomaterial in Diverse Biological Applications. In: Kalia, V., Saini, A. (eds) Metabolic Engineering for Bioactive Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-10-5511-9_14

Download citation

Publish with us

Policies and ethics