Skip to main content

Soil Reclamation Through Phytoextraction and Phytovolatilization

  • Chapter
  • First Online:
Volatiles and Food Security

Abstract

Environmental pollution becomes most severe due to anthropologic actions including domestic waste generation and excessive utilization of fertilizers and pesticides to get better yield. Although the phenomenon of hyperaccumulation of metal ions in shoots of certain plants is known since long, the contemporary environmental concerns have prompted broad-based studies on hyperaccumulator plants that can phytoremediate contaminated soils. Phytoremediation is considered as an eco-friendly technology which is deployed to alleviate pollutants from environment components. The present chapter discusses phytoextraction and phytovolatilization mechanisms that are involved in the decontamination of the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbad A, El Hadrami A, El Hadrami I, Benchaabane A (2004) Atriplex halimus (Chenopodiaceae): a halophytic species for restoration and rehabilitation of saline degraded lands. Pak J Biol Sci 7:1085–1093

    Article  Google Scholar 

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  CAS  Google Scholar 

  • Affek HP, Yakir D (2002) Protection by isoprene against singlet oxygen in leaves. Plant Physiol 129:269–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angrish R, Devi S (2014) Potential of salt hyperaccumulation plants in salinity phytoremediation. Advances Plant Physiol 15:307–323

    Google Scholar 

  • Arimura G, Ozawa R, Nishioka T, Boland W, Koch T, Kuhnemann F, Takabayashi J (2002) Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J 29:87–98

    Article  CAS  PubMed  Google Scholar 

  • Arimura G, Ozawa R, Kugimiya S, Takabayashi J, Bohlmann J (2004) Herbivore-induced defense response in a model legume: two-spotted spider mites, Tetranychus urticae, induce emission of (E)-β-ocimene and transcript accumulation of (E)-β-ocimene synthase in Lotus japonicus. Plant Physiol 135:1976–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann A (1885) Das verhalten von zinksalzen gegen pffanzen and in boden

    Google Scholar 

  • Belimov AA, Kunakova AM, Safronova VI, Stepanok VV, Yudkin LY, Alekseev YV, Ozhemyakov AP (2004) Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiology (Moscow) 73(1):99–106

    Article  CAS  Google Scholar 

  • Bingham FT, Pereyea FJ, Jarrell WM (1986) Metal toxicity to agricultural crops. Met Ions Biol Syst 20:119–156

    CAS  Google Scholar 

  • Boff MIC, Zoon FC, Smits PH (2001) Orientation of Heterorhabditis megidis to insect hosts and plant roots in a Y-tube sand olfactometer. Entomol Exp Appl 98:329–337

    Article  Google Scholar 

  • Brown SL, Chany RL, Angle RS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge amended soils. Environ Sci Technol 25:1581–1585

    Article  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byers JN (1935) Selenium occurrence in certain soils in the United States, with a discussion of related topics. US Dep Agric Technol Bull 482:1–47

    Google Scholar 

  • Byers HG (1936) Selenium occurrence in certain soils in the United States, with discussion of related topics. Second report US Dep. Agric Technol Bull 530:1–78

    Google Scholar 

  • Chen F, Ro DK, Petri J, Gershenzon J, Bohlmann J, Pichersky E, Tholl D (2004) Characterization of root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol 135:1956–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copolovici LO, Filella I, Llusia J, Niinemets U, Penuelas J (2005) The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Physiol 139:485–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. Cell Dev Biol 29(4):207–212

    Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahiya IS, Laura RD (1988) The recent advances in the characterization, reclamation and management of salt affected soils in India – A review. Intern J Trop Agric 6:157–117

    Google Scholar 

  • Datta KS, Angrish R (2006) Selection, characterization and quantification of plant species for phytoremediation of saline soils. Final Progress Report, Ministry of Environment and Forests, Government of India, New Delhi, pp 1–166

    Google Scholar 

  • De Moraes CM, Mescheer MC, Tumlinson JH (2001) Caterpillar induced nocturnal plant volatiles repel nonspecific females. Nature 410:577–580

    Article  PubMed  Google Scholar 

  • de Souza MP, Huang CP, Chee N, Terry N (1999) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209:259–263

    Article  PubMed  Google Scholar 

  • Dettenmaier EM, Doucette WJ, Bugbee B (2009) Chemical hydrophobicity and uptake by plant roots. Environ Sci Technol 43(2):324–329

    Article  CAS  PubMed  Google Scholar 

  • Devi S, Rani C, Datta KS, Bishnoi SK, Mahala SC, Angrish R (2008) Phytoremediation of soil salinity using salt hyperaccumulator plants. Indian J Plant Physiol 4:347–356

    Google Scholar 

  • Devi S, Nandwal AS, Angrish R, Arya SS, Kumar N, Sharma SK (2016) Phytoremediation potential of some halophytic species for soil salinity. Int J Phytoremediation 18:693–696

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, van Loon JJA (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol Exp Appl 97:237–249

    Article  CAS  Google Scholar 

  • Dicke M, Abelis MW, Takabayashi J, Bruin J, Posthumus MA (1990) Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control. J Chem Ecol 16:3091–3117

    Article  CAS  PubMed  Google Scholar 

  • Elizabeth PS (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  Google Scholar 

  • Elsgaard L, Petersen SO, Debosz K (2001) Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 1. Short-term effects on soil microbiology. Environ Toxicol Chem 20(8):1656–1663

    Article  CAS  PubMed  Google Scholar 

  • Filip Z (2002) International approach to assessing soil quality by ecologically-related biological parameters. Agric Ecosyst Environ 88(2):689–712

    Article  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77(3):229–236

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5):383–393

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth-promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Gols R, Roosjen M, Dijkman H, Dicke M (2003) Induction of direct and indirect plant responses by jasmonic acid, low spider mite densities, or a combination of jasmonic acid treatment and spider mite infestation. J Chem Ecol 29:2651–2666

    Article  CAS  PubMed  Google Scholar 

  • Gordon M, Choe N, Duffy J, Ekuan G, Heilman P, Muiznieks I, Ruszaj M, Shurtleff BB, Strand S, Wilmoth J, Newman LA (1998) Phytoremediation of trichloroethylene with hybrid poplars. Environ Health Perspect 106:1001–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamidov A, Khaydarova V, Khamidov M, Neves A, Beltrao J (2007) Remediation of saline soils using Apocynum lancifolium and Chenopodium album. In: Proceedings of the 3rd IASME/WSEAS international conference on energy, environment, Agios Nikolas, Greece, July 24–26, pp 157–164

    Google Scholar 

  • Hammer KA, Carson CF, Riley TV (2003) Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol 95:853–860

    Article  CAS  PubMed  Google Scholar 

  • Heil M (2004) Direct defense or ecological costs: responses of herbivorous beetles to volatiles released by wild Lima bean (Phaseolus lunatus). J Chem Ecol 30:1289–1295

    Article  CAS  PubMed  Google Scholar 

  • Hilker M, Meiners T (2002) Induction of plant responses towards oviposition and feeding of herbivorous arthropods: a comparison. Entomol Exp Appl 104:181–192

    Article  CAS  Google Scholar 

  • Horiuchi JI, Arimura GI, Ozawa R, Shimoda T, Dicke M, Takabayashi J, Nishioka T (2003) Lima bean leaves exposed to herbivore-induced conspecific plant volatiles attract herbivores in addition to carnivores. Appl Entomol Zool 38:365–368

    Article  Google Scholar 

  • Huang Y, Tao S, Chen YJ (2005) The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil. J Environ Sci 17(2):276–280

    CAS  Google Scholar 

  • Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013) Terrestrial water fluxes dominated by transpiration. Nature 496:347–350

    Article  CAS  PubMed  Google Scholar 

  • Kabata-Pendias A, Pendias H (1989) Trace elements in the soil and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2142–2143

    Article  Google Scholar 

  • Knudsen JT, Gershenzon J (2006) The chemistry diversity of floral scent. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, pp 27–52

    Google Scholar 

  • Knudsen JT, Tollsten L (1993) Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa. Bot J Linn Soc 113:263–284

    Article  Google Scholar 

  • Kumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29(5):1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Lasat HA (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31(1):109–120

    Article  CAS  PubMed  Google Scholar 

  • Limmer M, Burken J (2016) Phytovolatilization of organic contaminants. Environ Sci Technol 50:6632–6643

    Article  CAS  PubMed  Google Scholar 

  • Loreto F, Mannozzi M, Maris C, Nascetti P, Ferranti F, Pasqualini S (2001) Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiol 126:993–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24:361–367

    Article  CAS  PubMed  Google Scholar 

  • McCutchen SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, pp 233–262

    Book  Google Scholar 

  • Minguzzi C, Vergnano O (1948) II. Contenuto di nichel nelle ceneri di Alyssum bertolonii Desu. Atti della Societa Tosoma di Scienze. Nat Mem Ser A 55:49–77

    CAS  Google Scholar 

  • Narayanan M, Davis LC, Erickson LE (1995) Fate of volatile chlorinated organic compounds in a laboratory chamber with alfalfa plants. Environ Sci Technol 29:2437–2444

    Article  CAS  PubMed  Google Scholar 

  • Negri MC, Gatliff EG, Quinn JJ, Hinchman RR (2003) Root development and rooting at depths. In Phytoremediation

    Google Scholar 

  • Neumann RB, Cardon ZG (2012) The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol 194:337–352

    Article  PubMed  Google Scholar 

  • Neveu N, Grandgirard J, Nenon JP, Cortesero AM (2002) Systemic release of herbivore-induced plant volatiles by turnips infested by concealed root-feeding larvae Delia radicum L. J Chem Ecol 28:1717–1732

    Article  CAS  PubMed  Google Scholar 

  • Ouni Y, Lakhdar A, Rabi M, Aoui AS, Maria AR, Chedly A (2013) Effects of the halophytes Tecticornia indica and Suaeda fruticosa on soil enzyme activities in a Mediterranean sabkha. Int J Phytoremediation 15:188–197

    Article  PubMed  Google Scholar 

  • Penuelas J, Llusia J, Asensio D, Munne-Bosch S (2005) Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. Plant Cell Environ 28:278–286

    Article  CAS  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    Article  CAS  PubMed  Google Scholar 

  • Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize. Nature 434:732–737

    Article  CAS  PubMed  Google Scholar 

  • Ro DK, Ehlting J, Keeling CI, Lin R, Mattheus N, Bohlmann J (2006) Microarray expression profiling and functional characterization of AtTPS genes: duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)−γ – bisabolene synthases. Arch Biochem Biophys 448:104–116

    Article  CAS  PubMed  Google Scholar 

  • Rubin E, Ramaswami A (2001) The potential for phytoremediation of MTBE. Water Res 35:1348–1353

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biol Technol 13(5):468–474

    CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Ann Rev Plant Physiol Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    Article  CAS  Google Scholar 

  • Sen DN, Rajpurohit KS, Wissing FW (1982) Survey and adaptive biology of halophytes in Western Rajasthan, India. Department of Botany and Geography, University of Jodhpur, vol 2. Dr. W. Junk Publishers, The Hague

    Google Scholar 

  • Sharkey TD, Chen XY, Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol 125:2001–2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skelding AD, Wintebotham J (1939) The structure and development of the hydathodes of Spartina townsendii groves. New Phytol 38:69–79

    Article  Google Scholar 

  • Suresh B, Ravisanker GA (2004) Phytoremediation – A novel and promising approach for environmental clean up. Critic Rev Biotech 24:97–124

    Article  CAS  Google Scholar 

  • Takabayashi J, Dicke M (1996) Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci 1:109–113

    Article  Google Scholar 

  • Thangavel P, Subbhuraam CV (2004) Phytoextraction: role of hyperaccumulators in metal contaminated soils. Proc Indian Natl Sci Acad 70:109–130

    CAS  Google Scholar 

  • Tanji KK (1990) Agricultural Salinity Assessment and Management. Irrigation and Drainage Division, American Society of Civil Engineers, New York

    Google Scholar 

  • Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, Castanera P, Sanchez-Serrano JJ (2001) Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc Natl Acad Sci U S A 98:8139–8144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel WW, Lombi E, Adriano DC (1999) Biochemical processes in the rhizosphere: role in phytoremediation of metal-polluted soils. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 273–303

    Chapter  Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35(15):3144–3150

    Article  CAS  PubMed  Google Scholar 

  • Williams MC (1960) Effect of sodium and potassium salts on growth and oxalate content of halogeton. Plant Physiol 35:500–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo AR (1974) Salt tolerance in the halophyte Suaeda maritime L. Dum. D. Phil. Thesis Univ. Sussex, England, p 183

    Google Scholar 

  • Ziegler H, Luttge U (1967) Die Salzdrusen von Limonium vulgare. II. Mitteilung, Die Lokisierung des chloride. Planta 74:1–17

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Arya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Arya, S.S., Devi, S., Angrish, R., Singal, I., Rani, K. (2017). Soil Reclamation Through Phytoextraction and Phytovolatilization. In: Choudhary, D., Sharma, A., Agarwal, P., Varma, A., Tuteja, N. (eds) Volatiles and Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-10-5553-9_3

Download citation

Publish with us

Policies and ethics