Skip to main content

Multi-objective Optimization Design Method of the High-Speed Train Head

  • Chapter
  • First Online:
China's High-Speed Rail Technology

Part of the book series: Advances in High-speed Rail Technology ((ADVHIGHSPEED))

Abstract

With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train head design. Given that the aerodynamic drag is a significant factor that restrains train speed and energy conservation, reducing the aerodynamic drag is thus an important consideration of the high-speed train head design. However, the reduction of the aerodynamic drag may increase other aerodynamic forces (moments), possibly deteriorating the operational safety of the train. The multi-objective optimization design method of the high-speed train head was proposed in this paper, and the aerodynamic drag and load reduction factor were set to be optimization objectives. The automatic multi-objective optimization design of the high-speed train head can be achieved by integrating a series of procedures into the multi-objective optimization algorithm, such as the establishment of 3D parametric model , the aerodynamic mesh generation, the calculation of the flow field around the train , and the vehicle system dynamics . The correlation between the optimization objectives and optimization variables was analyzed to obtain the most important optimization variables, and a further analysis of the nonlinear relationship between the key optimization variables and the optimization objectives was obtained. After optimization, the aerodynamic drag of optimized train was reduced by up to 4.15%, and the load reduction factor was reduced by up to 1.72%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aguilar Madeira, J. F., Rodrigues, H., & Pina, H. (2005). Multi-objective optimization of structures topology by genetic algorithms. Advances in Engineering Software, 36(1), 21–28. doi:10.1016/j.advengsoft.2003.07.001.

    Article  MATH  Google Scholar 

  • Brockie, N. J. W., & Baker, C. J. (1990). The aerodynamic drag of high speed train. Journal of Wind Engineering and Industrial Aerodynamics, 34(3), 273–290. doi:10.1016/0167-6105(90)90156-7.

    Article  Google Scholar 

  • Custódio, A. L., Madeira, J. F. A., Vaz, A. I. F., & Vicente, L. N. (2011). Direct multisearch for multiobjective optimization. SIAM Journal on Optimization, 21(3), 1109–1140. doi:10.1137/10079731X.

    Article  MathSciNet  MATH  Google Scholar 

  • Custódio, A. L., Emmerich, M., & Maderia, J. F. A. (2012). Recent developments in derivative-free multiobjective optimization. Computational Technology Reviews, 5, 1–30. doi:10.4203/ctr.5.1.

    Article  Google Scholar 

  • Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. doi:10.1109/4235.996017.

    Article  Google Scholar 

  • Hemida, H., & Krajnović, S. (2010). LES study of the influence of the nose shape and yaw angles on flow structures around trains. Journal of Wind Engineering and Industrial Aerodynamics, 98(1), 34–46. doi:10.1016/j.jweia.2009.08.012.

    Article  Google Scholar 

  • Ikeda, M., Suzuki, M., & Yoshida, K. (2006). Study on optimization of panhead shape possessing low noise and stable aerodynamic characteristics. Quarterly Report of RTRI, 47(2), 72–77. doi:10.2219/rtriqr.47.72.

    Article  Google Scholar 

  • Kikuchi, K., Tanaka, Y., Iida, M., Yamauchi, N., Yoshida, Y., Nakanishi, M., et al. (2001). Countermeasures for reducing pressure variation due to train passage in open sections. Quarterly Report of RTRI, 42(2), 77–82. doi:10.2219/rtriqr.42.77.

    Article  Google Scholar 

  • Ku, Y. C., Rho, J. H., Yun, S. H., Kwak, M. H., Kim, K. H., Kwon, H. B., et al. (2010). Optimal cross-sectional area distribution of a high-speed train nose to minimize the tunnel micro-pressure wave. Structural and Multidisciplinary Optimization, 42(6), 965–976. doi:10.1007/s00158-010-0550-6.

    Article  Google Scholar 

  • Kwon, H. B., Jang, K. H., Kim, Y. S., Yee, K. J., & Lee, D. H. (2001). Nose shape optimization of high-speed train for minimization of tunnel sonic boom. JSME International Journal Series C: Mechanical Systems Machine Elements and Manufacturing, 44(3), 890–899. doi:10.1299/jsmec.44.890.

    Article  Google Scholar 

  • Lee, J., & Kim, J. (2008). Approximate optimization of high-speed train nose shape for reducing micropressure wave. Structural and Multidisciplinary Optimization, 35(1), 79–87. doi:10.1007/s00158-007-0111-9.

    Article  Google Scholar 

  • Li, T., Zhang, J. Y., & Zhang, W. H. (2013). A numerical approach to the interaction between airflow and a high-speed train subjected to crosswind. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 14(7), 482–493. doi:10.1631/jzus.A1300035.

    Article  Google Scholar 

  • Maeda, T., Kinoshita, M., Kajiyama, H., & Tanemoto, K. (1989). Aerodynamic drag of Shinkansen electric cars (series 0, series 200, series 100). Railway Technical Research Institute, Quarterly Report, 30(1), 48–56.

    Google Scholar 

  • Raghunathan, R. S., Kim, H. D., & Setoguchi, T. (2002). Aerodynamics of high-speed railway train. Progress in Aerospace Sciences, 38(6–7), 469–514. doi:10.1016/S0376-0421(02)00029-5.

    Article  Google Scholar 

  • Schetz, J. A. (2001). Aerodynamics of high-speed trains. Annual Review of Fluid Mechanics, 33(1), 371–414. doi:10.1146/annurev.fluid.33.1.371.

    Article  MATH  Google Scholar 

  • Shao, X. M., Wan, J., Chen, D. W., & Xiong, H. B. (2011). Aerodynamic modeling and stability analysis of a high-speed train under strong rain and crosswind condition. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 12(12), 964–970. doi:10.1631/jzus.A11GT001.

    Article  Google Scholar 

  • Sun, Z. X., Song, J. J., & An, Y. R. (2010). Optimization of the head shape of the CRH3 high speed train. Science China Technological Sciences, 53(12), 3356–3364. doi:10.1007/s11431-010-4163-5.

    Article  MATH  Google Scholar 

  • Suzuki, M., Ikeda, M., & Yoshida, K. (2008). Study on numerical optimization of cross-sectional panhead shape for high-speed train. Journal of Mechanical Systems for Transportation and Logistics, 1(1), 100–110. doi:10.1299/jmtl.1.100.

    Article  Google Scholar 

  • Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics. The finite volume method (2nd ed.). New Jersey, America: Prentice Hall.

    Google Scholar 

  • Yao, S. B., Guo, D. L., & Yang, G. W. (2012). Three-dimensional aerodynamic optimization design of high-speed train nose based on GA-GRNN. Science China Technological Sciences, 55(11), 3118–3130. doi:10.1007/s11431-012-4934-2.

    Article  Google Scholar 

  • Zhou, A., Qu, B. Y., Li, H., Zhao, S. Z., Suganthan, P. N., & Zhang, Q. F. (2011). Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1), 32–49. doi:10.1016/j.swevo.2011.03.001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-ge Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Zhejiang University Press, Hangzhou and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, Mg., Zhang, Jy., Zhang, Wh. (2018). Multi-objective Optimization Design Method of the High-Speed Train Head. In: Fang, Y., Zhang, Y. (eds) China's High-Speed Rail Technology. Advances in High-speed Rail Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5610-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5610-9_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5609-3

  • Online ISBN: 978-981-10-5610-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics