Skip to main content

Effect of Induced Residual Stress and Its Contribution to the Failure of an IC Engine Valve Material

  • Conference paper
  • First Online:
Proceedings of Fatigue, Durability and Fracture Mechanics

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 1392 Accesses

Abstract

The increasing engine demands such as high power, fuel efficiency and lesser emission have led to enormous modification in the intake and exhaust system of an engine. These improvements create additional loads on the valve train components as they have to cope with the increased speed as well as the efficiency and higher temperatures. Thus, engine valve materials must have high durability, high fatigue, wear resistance and temperature resistance. Intake valves generally made of martensitic steels will undergo high cyclic loads, and due to this higher stress in the material, chording of valve face occurs. Major cause for the failure of inlet valves is fatigue. A chorded inlet valve has been analyzed to see the root cause of the failure, and various factors contributed to the failure have been studied. Failure analysis has been done starting from the engine operating conditions to the production processes of the valve material to find out the failure initiation point. Metallurgical study of the chorded valve material through SEM reveals the microstructural details, composition and inclusions. Residual stress induced in the material during various points of production and operation has been observed to calculate the effect of inferring stress to failure. The amount of residual stress in induction-hardened valve material before and after stress relieving has been calculated to find out the contribution of stress relieving to remove the added tensile stress. Failure prevention modes are suggested based on the lowest possible residual stress value observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lavhale YK, Salunke J (2014) Overview of failure trend of inlet & exhaust valves. IJMET 5(3):104–113

    Google Scholar 

  2. Londhe RT, Kshirsagar JM (2014) Experimental analysis of valve and valve seats wear in gases (CNG) fuelled engine. IOSR J Mech Civil Eng (IOSR-JMCE) 11(4) Ver. I:PP 56–62 (e-ISSN: 2278-1684, p-ISSN: 2320-334X)

    Google Scholar 

  3. Pandey A, Mandloi RK (2014) Effects of high temperature on the microstructure of automotive engine valves. Int J Eng Res Appl www.ijera.com 4(3) (Version 1):122–126 (ISSN: 2248-9622)

  4. Raghuwanshi NK, Pandey A, Mandloi RK (2012) Failure analysis of internal combustion engine valves: a review. Int J Innovative Res Sci, Eng Technol 1(2):173–181

    Google Scholar 

  5. Kumar GU, Mamilla VR (2012) Failure analysis of internal combustion engine valves by using ANSYS. Am Int J Res Sci, Technol, Eng Math 6:1–25

    Google Scholar 

  6. Lewis R, Dwyer Joyce RS (2003) Combating automotive engine valve recession. Tribol Lubr Technol 59(10):48–51 (ISSN 0024-7154)

    Google Scholar 

  7. de Wilde EF (1967) Investigation of engine exhaust valve wear. Wear 10:231–244

    Article  Google Scholar 

  8. Algieri A (2013) Fluid dynamic efficiency of a high performance multi-valve. Therm Sci 17(1):25–34

    Google Scholar 

  9. Wang YS, Schaefer SK, Bennett C, Barber GC (1995) Wear mechanisms of valve seat and insert in heavy duty diesel engine. Soc Automot Eng, Warrendale, PA, p 11 SAE paper 952476

    Google Scholar 

  10. Liang X, Strong G, Eickmeyer D, Myers K (1999) A study of valve seat insert wear mechanisms. Soc Automot Eng, Warrendale, PA, p 12 SAE Paper 1999–01-3673

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurunathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gurunathan, Sharma, J., Velshankar (2018). Effect of Induced Residual Stress and Its Contribution to the Failure of an IC Engine Valve Material. In: Seetharamu, S., Rao, K., Khare, R. (eds) Proceedings of Fatigue, Durability and Fracture Mechanics. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-6002-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6002-1_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6001-4

  • Online ISBN: 978-981-10-6002-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics