Skip to main content

Role of Salicylic Acid in the Control of General Plant Growth, Development, and Productivity

  • Chapter
  • First Online:
Salicylic Acid: A Multifaceted Hormone

Abstract

Applications of low concentrations of salicylic acid (SA) to the shoots of seedlings of horticultural plants such as habanero pepper (Capsicum chinense) or to perennial trees such as the Ramon (Brosimum alicastrum) significantly increase their growth, development and productivity.

In chili pepper it was found that the positive effect of SA on root growth is correlated with an increased uptake of macro nutrients and micronutrients which are allocated in the plant tissues. Data have shown that plant tissues treated with SA had significantly higher levels of macronutrients. Accumulation of nitrogen, phosphorus and potassium was higher in fruits (116%, 110% and 97%), leaves (45.5%, 39.4% and 29.1%), roots (52.6%, 17% and 29.4%), and stems (5.0%, 39.4% and 28.3%) with respect to the control plants. The levels of other nutrients, such as copper, zinc, manganese, boron, calcium, magnesium and iron, were also higher.

The application of 1 μM SA to shoots of trees, affected the root length. The control plants had 42 cm, and those of the treated plants 65.5 cm, equivalent to an increase of 55.7%. Fresh weight of the root was 158.3% higher in the treated plants and the dry weight increased by 160.7%. Increases were also observed in stem length (46%), stem diameter (25.9%), fresh weight (78.3%), and dry weight (89%), in comparison with the control. The number of leaves presented in treated plants averaged 12.6, whereas the control plants showed an average of 9 leaves with a lower leaf area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anwar S, Iqbal M, Raza SH, Iqbal N (2013) Efficacy of seed preconditioning with salicylic and ascorbic acid in increasing vigor of rice (Oryza sativa L.) seedling. Pak J Bot 45:157–162

    Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164:685–694

    Article  CAS  PubMed  Google Scholar 

  • Basu RN, Bose TK, Roy BN, Mukhopadhyay A (1969) Auxin synergist in rooting of cuttings. Physiol Plant 22:649–652

    Article  CAS  Google Scholar 

  • Chen J, Zhu C, Li LP, Sun ZY, Pan XB (2007) Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. J Environ Sci 19:44–49

    Article  CAS  Google Scholar 

  • Choudhury SM, Panda SK (2004) Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulg J Plant Physiol 30:95–110

    CAS  Google Scholar 

  • Cleland CF, Tanaka O (1979) Effect of day length of the ability of salicylic acid to induce flowering in the long-day Lemna gibba G3 and the short day plant Lemna paucicostata 6746. Plant Physiol 64:421–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deef HE (2007) Influence of salicylic acid on stress tolerance during seed germination of Triticum aestivum and Hordeum vulgare. Adv Biol Res 1:40–48

    Google Scholar 

  • Delaney TP (2010) Salicylic acid. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction and action! 3rd edn. Springer, Dordrecht, pp 681–699

    Chapter  Google Scholar 

  • Echeverría-Machado I, Escobedo-GM RM, Larqué-Saavedra A (2007) Responses of transformed Catharantus roseus roots to femtomolar concentrations of salicylic acid. Plant Physiol Biochem 45:501–507

    Article  Google Scholar 

  • El Tayeb MA, Ahmed NL (2010) Response of wheat cultivars to drought and salicylic acid. Am Eu J Agron 3:1–70

    Google Scholar 

  • El-Feky SS, El-Shintinawy FA, Shaker EM (2014) Role of CaCl2 and salicylic acid on metabolic catabolic and productivity of boron stressed barley (Hordium vulgare L.) Int J Curr Microbiol App Sci 3:368–380

    CAS  Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica 41:281–284

    Article  CAS  Google Scholar 

  • Farzane MH, Monem R, Mirtaheri SM, Kashani SF (2014) Effect of salicylic acid on germination and growth seedling of 10 variety barley (Hordeum vulgare L.) under drought stress. Int J Biosci 5:445–448

    Article  Google Scholar 

  • Gutiérrez-C M, Trejo-L C, Larqué-Saavedra A (1998) Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiol Biochem 36:563–565

    Article  Google Scholar 

  • Habibi G (2012) Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biol Szeged 56:57–63

    Google Scholar 

  • Hayat S, Ali B, Ahmad A (2007) Salicylic acid: biosynthesis, metabolism and physiological role in plants. (Chapter 1). In: Hayat S, Ahmad A (eds) Salicylic acid-a plant hormone. Springer, Dordrecht, pp 1–14

    Chapter  Google Scholar 

  • Hayat Q, Hayat S, Alyemini MN, Ahmad A (2012) Salicylic acid mediated changes in growth, photosynthesis, nitrogen metabolism and antioxidant defense system in Cicer arietinum L. Plant Soil Environ 58:417–423

    CAS  Google Scholar 

  • Hayat S, Ahamad A, Alyemeni MN (2013) Salicylic acid. Plant growth and development. Springer, p 389

    Google Scholar 

  • Larqué-Saavedra A (1978) The antritranspirant effect of acetylsalicylic acid on Phaseolus vulgaris. Physiol Plant 43:126–128

    Article  Google Scholar 

  • Larqué-Saavedra A (1979) Stomatal closure in response to acetylsalicylic acid treatment. Z Pflanzenphysiol 93:371–375

    Article  Google Scholar 

  • Larqué-Saavedra A, Martín-Mex R (2007) Effect of salicylic acid on the bioproductivity of plants (chapter 2). In: Hayat S, Ahmad A (eds) Salicylic acid-a plant hormone. Springer, Dordrecht, pp 15–23

    Chapter  Google Scholar 

  • Larqué-Saavedra A, Rodríguez G (1989) Evidences for maternal inheritance of abscisic acid in relation to drought tolerance in Zea mays L. Phyton 49:145–150

    Google Scholar 

  • Larqué-Saavedra A, Martin-Mex R, Nexticapan-Garcez A, Vergara-Yoisura S, Gutierrez-Rendón M (2010) Efecto del ácido salicílico en el crecimiento de plántulas de tomate (Lycopersicon esculentum Mill.) Rev Chapingo Ser Horticultura XVI(3):183–187

    Article  Google Scholar 

  • Li L, Li L (1995) Effects of resorcinol and salicylic acid on the formation of adventitious roots on hypocotyls cutting of Vigna radiate. J Trop Subtrop Bot 3:67–71

    Google Scholar 

  • Martín-Mex R, Nexticapan-Garcez A, Larqué-Saavedra A (2013) Salicylic acid: plant growth and development. In: Hayat S, Ahmad A, Alyemini MN (eds) Potential benefits of salicylic acid in food production. Springer, pp 299–313

    Google Scholar 

  • Mutlu S, Karadağoğlu Ö, Atici Ö, Nalbantoğlu B (2013) Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast. Biol Plant 57(3):507–513

    Google Scholar 

  • National Academy of Sciences (1975) Underexploited tropical plants with promising economic value. Washington, DC, 189 p

    Google Scholar 

  • Pardo-Tejeda E, Gómez-Pompa A, Sosa Ortega V (1976) El Ramón. In: Informa INIREB (ed) Comunicado No. 3 sobre recursos bióticos potenciales del País. Instituto de Investigaciones sobre Recursos Bióticos, Xalapa, 4 p

    Google Scholar 

  • Pirasteh-Anosheh H, Ranjbar G, Emam Y, Ashraf M (2014) Salicylic acid-induced recovery ability in salt-stressed Hordeum vulgare plants. Turk J Bot 38:112–121

    Google Scholar 

  • Raskin I (1992) Salicylate, a new plant hormone. Plant Physiol 99:799–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond: its role in plant growth and development. J Exp Bot 1:1–18

    Google Scholar 

  • Sánchez-Chávez E, Barrera-Tovar R, Muñoz-Márquez E, Ojeda-Barrios DL, Anchondo-Nájera (2011) Efecto del ácido salicílico sobre biomasa, actividad fotosintética, contenido nutricional del chile jalapeño. Rev Chapingo Ser Hortic 17:63–66

    Article  Google Scholar 

  • San-Miguel R, Gutiérrez M, Larqué-Saavedra A (2003) Salicylic acid increases the biomass accumulation of Pinus patula. South J Appl For 27:52–54

    CAS  Google Scholar 

  • Shimakawa A, Shiraya T, Ishizuka Y, Wada KC, Mitsui T, Takeno K (2012) Salicylic acid is involved in the regulation of starvation stress-induced flowering in Lemna paucicostata. J Plant Physiol 169:987–991

    Article  CAS  PubMed  Google Scholar 

  • Villanueva-Couoh E, Alcántar-González G, Sánchez-García P, Soria-Fregoso M, Larque-Saavedra A (2009) Efecto del ácido salicílico y dimetilsulfóxido en la floración de (Chrysanthemum morifolium (ramat) kitamura) en Yucatán. Rev Chapingo Ser Horticultura 15:25–31

    Article  Google Scholar 

  • Yusuf M, Hayat S, Alyemi N, Fariduddin Q, Ahmad A (2012) Salicylic acid physiological roles in plants. In: Hayat S, Ahmad A (eds) Salicylic acid-plant growth and development. Springer, Dordrecht, pp 15–30

    Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Larqué-Saavedra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tucuch-Haas, C.J. et al. (2017). Role of Salicylic Acid in the Control of General Plant Growth, Development, and Productivity. In: Nazar, R., Iqbal, N., Khan, N. (eds) Salicylic Acid: A Multifaceted Hormone. Springer, Singapore. https://doi.org/10.1007/978-981-10-6068-7_1

Download citation

Publish with us

Policies and ethics