Skip to main content

Emerging Trends of Organogels in Drug Chemistry

  • Chapter
  • First Online:
Polymer Gels

Abstract

Organogels are one of the major constituents in class of gels. They show three-dimensional and cross-linked network in organic liquid phase. Organogels are non-glassy thermoplastic solid materials and are non-crystalline and viscoelastic in nature. Despite of the liquid composition, some differences are seen in the morphological appearance of solids and the rheological behavior. These organogel systems have specific molecular requirements like gelation, depending on the physical and fiber interactions. Organogels are grown rapidly with more stability than other gels and also have features like moisture intensive, economic. Also, organogels are having lower hydration polymeric or low molecular weight of organogelators compared to other polymers. In general, organogels are thermodynamically stable in nature and utilized mainly for drug delivery of bioactive agents in scarce toxicology. Over the decades, organogels are having tremendous applications in various fields like pharmaceuticals, cosmetics, art conservation, and food. This chapter comprises of recent research work on organogels, its preparation, properties, characteristic parameters and various applications in different industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah DJ, Sirchio S, Weiss R (2000) Hexatriacontane organogels. The first determination of the conformation and molecular packing of a low-molecular-mass organogelator in its gelled state. Langmuir 16(20):7558–7561

    Article  Google Scholar 

  • Aboofazeli R, Zia H, Needham TE (2002) Transdermal delivery of Nicardipine: an approach to in vitro permeation enhancement. Drug Delivery 9(4):239–247

    Article  Google Scholar 

  • Aliotta F, Vasi C, Lechner RE, Ruffle B (2000) Evidence of percolative phenomena in a lecithin-based gel. Physica B: Condens Matter 276–278:347–348

    Article  Google Scholar 

  • Angelico R, Ceglie A, Colafemmina G, Lopez F, Murgia S, Olsson U, Palazzo G (2004) Biocompatible Lecithin organogels: structure and phase equilibria. Langmuir 21(1):140–148

    Article  Google Scholar 

  • Angelico R, Palazzo G, Colafemmina G (1998) Water diffusion and headgroup mobility in polymer-like reverse micelles: evidence of a sphere-to-rod-to-sphere transition. J Phys Chem B 102(16):2883–2889

    Article  Google Scholar 

  • Avramiotis S, Avramiotis S, Papadimitriou V, Hatzara E, Bekiari V, Lianos P, Xenakis A (2007) Lecithin organogels used as bioactive compounds carriers. A microdomain properties investigation. Langmuir 23(8):4438–4447

    Article  Google Scholar 

  • Bastiat G, Plourde F, Motulsky A, Furtos A, Dumont Y, Quirion R, Fuhrmann G, Leroux JC (2010) Tyrosine-based rivastigmine-loaded organogels in the treatment of Alzheimer’s disease. Biomaterials 31(23):6031–6038

    Article  Google Scholar 

  • Belgamwar V, Almeida H, Amaral MH, Lobão P, Lobo JM (2008) Pluronic lecithin organogel. Asian J Pharm 2(3):134–138

    Article  Google Scholar 

  • Bhatnagar S, Vyas S (1994) Organogel-based system for transdermal delivery of propranolol. J Microencapsul 11(4):431–438

    Article  Google Scholar 

  • Bonina FP, Montenegroa L, Scrofania N, Espositob E, Cortesib R, Menegattib E, Nastruzz C (1995) Effects of phospholipid based formulations on in vitro and in vivo percutaneous absorption of methyl nicotinate. J Controlled Release 34(1):53–63

    Article  Google Scholar 

  • Capitani D, Segre AL, Dreher F, Walde P, Luisi PL (1996) Multinuclear NMR investigation of phosphatidylcholine organogels. J Phys Chem 100(37):15211–15217

    Article  Google Scholar 

  • Carretti E, Dei L, Weiss R (2005) Soft matter and art conservation. Rheoreversible gels and beyond. Soft Matter 4(2):17–22

    Article  Google Scholar 

  • Chen Z, Prof F, Yang H, Yi T, Huang C (2007) A thermostable and long-term-stable ionic-liquid-based gel electrolyte for efficient dye-sensitized solar cells. ChemPhysChem 8(9):1293–1297

    Article  Google Scholar 

  • Dasgupta D, Srinivasan S, Rochas C, Ajayaghosh A, Guenet J (2009) Hybrid thermoreversible gels from covalent polymers and organogels. Langmuir 25(15):8593–8598

    Article  Google Scholar 

  • Díaz D, Tellado J, Velázquez D, Ravelo A (2008) Polymer thermoreversible gels from organogelators enabled by [‘click’] chemistry. Tetrahedron Lett 49(8):1340–1343

    Article  Google Scholar 

  • Dreher F, Walde P, Luisi PL, Elsner P (1995) Human skin irritation of a soybean lecithin microemulsion gel and of liposomes. Proc Controlled Release Soc 22:640–641

    Google Scholar 

  • Dreher F, Walde P, Luisi PL, Elsner P (1996) Human skin irritation studies of a lecithin microemulsion gel and of lecithin liposomes. Skin Pharmacol 9(2):124–129

    Article  Google Scholar 

  • Dreher F, Waldea P, Waltherb P, Wehrlib E (1997) Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport. J Controlled Release 45(2):131–140

    Google Scholar 

  • Engelkamp H, Middelbeek S, Nolte RJ (1999) Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science 284(5415):785–788

    Article  Google Scholar 

  • Esch J, Feringa B (2000) New functional materials based on self-assembling organogels: from serendipity towards design13. Angew Chem Int Ed 39(13):2263–2266

    Article  Google Scholar 

  • Esch J, Schoonbeek F, Loos MD, Veen EM, Kellogg RM, Feringa BL (1999) Low molecular weight gelators for organic solvents. Supramol Sci: Where it is and Where it is Going 6(3):233–259

    Google Scholar 

  • Fages F (2005) Low molecular mass gelators: design, self-assembly, function topics in current chemistry. 256(2):7–5. Germany: Springer Berlin Heidelberg

    Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. 3rd edn. Wiley, New York

    Google Scholar 

  • Fujii M, Shiozawa K, Henmi T, Yamanouchi S, Suzuki H, Yamashita N, Matsumot M (1996) Skin permeation of indomethacin from gel formed by fatty-acid ester and phospholipid. Int J Pharm 137(1):117–124

    Article  Google Scholar 

  • Garner C, Terech P, Allegraud J, Mistrot B, Nguyen P, Geyer A, Rivera D (1998) Thermoreversible gelation of organic liquids by arylcyclohexanol derivatives: synthesis and characterisation of the gels. J Chem Soc, Faraday Trans 94:7–9

    Article  Google Scholar 

  • Guenet J-M (2006) Microfibrillar networks: polymer thermoreversible gels versus organogels. Macromol Symp 241(1):45–50

    Article  Google Scholar 

  • Hadgraft J (1999) Passive enhancement strategies in topical and transdermal drug delivery. Int J Pharm 184(1):1–6

    Article  Google Scholar 

  • Hadidi N, Nazari N, Aboofazeli R (2009) Formulation and optimization of microemulsion-based organogels containing propranolol hydrochloride using experimental design methods. DARU 17(3)

    Google Scholar 

  • Haering G, Luisi PL (1986) Hydrocarbon gels from water-in-oil microemulsions. J Phys Chem 90(22):5892–5895

    Article  Google Scholar 

  • Hoffman SB, Yoder AR, Trepanier LA (2002) Bioavailability of transdermal methimazole in a pluronic lecithin organogel (PLO) in healthy cats. J Vet Pharmacol Ther 25(3):189–193

    Article  Google Scholar 

  • Kang L, Liu XY, Sawant PD, Ho PC, Chan YW, Chan SY (2005) SMGA gels for the skin permeation of haloperidol. J Controlled Release 106(1–2):88–98

    Article  Google Scholar 

  • Kantaria S, Rees GD, Lawrence MJ (2003) Formulation of electrically conducting microemulsion-based organogels. Int J Pharm 250(1):65–83

    Article  Google Scholar 

  • Kantaria S, Rees G, Lawrence M (1999) Gelatin-stabilised microemulsion-based organogels: rheology and application in iontophoretic transdermal drug delivery. J Controlled Release 60(2–3):355–365

    Article  Google Scholar 

  • Kumar R, Katare P (2005) Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review. AAPS Pharm Sci Tech 6(2):E298–E310

    Article  Google Scholar 

  • Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45(1):89–121

    Article  Google Scholar 

  • Lim PFC, Lim PF, Liu XY, Kang L, Ho PC, Chan YW, Chan SY (2006) Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol. Int J Pharm 311(1–2):157–164

    Article  Google Scholar 

  • Lim P, Liu XY, Kang L, Ho PC, Chan YW, Chan SY (2008) Physicochemical effects of terpenes on organogel for transdermal drug delivery. Int J Pharm 358(1–2):102–107

    Article  Google Scholar 

  • Liu H, Wang Y, Han F, Yao H, Li S (2007) Gelatin-stabilised microemulsion-based organogels facilitates percutaneous penetration of Cyclosporin A and dermal pharmacokinetics. J Pharm Sci 96(11):3000–3009

    Article  Google Scholar 

  • Luisi PL, Scartazzini R, Haering G, Schurtenberger P (1990) Organogels from water-in-oil microemulsions. Colloid Polym Sci 268(4):356–374

    Article  Google Scholar 

  • Malik S, Maji S, Banerjee A, Nandi A (2002) A synthetic tripeptide as organogelator: elucidation of gelation mechanism. J Chem Soc Perkin Trans 2:1177–1186

    Article  Google Scholar 

  • Mayer J, Wagner R, Taeymans O (2010) Advanced diagnostic approaches and current management of thyroid pathologies in Guinea pigs. Vet Clin North Am: Exotic Anim Pract 13(3):509–523

    Google Scholar 

  • Moniruzzaman M, Sahin A, Winey K (2009) Improved mechanical strength and electrical conductivity of organogels containing carbon nanotubes. Carbon 47(3):645–650

    Article  Google Scholar 

  • Motulsky A, Lafleur M, Couffin-Hoarau AC, Hoarau D, Boury F, Benoit JP, Leroux JC (2005) Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implants. Biomaterials 26(31):6242–6253

    Article  Google Scholar 

  • Murdan S (2005) A review of pluronic lecithin organogel as a topical and transdermal drug delivery system. Hospital Pharmacist 12(7):267–270

    Google Scholar 

  • Murdan S, Andrýsek T, Son D (2005) Novel gels and their dispersions—oral drug delivery systems for ciclosporin. Int J Pharm 300(1–2):113–124

    Article  Google Scholar 

  • Murdan S, Gregoriadis G, Florence AT (1996) Non-ionic surfactant based organogels incorporating niosomes. STP Pharm Sci 6(1):44–48

    Google Scholar 

  • Murdan S, Gregoriadis G, Florence AT (1999a) Interaction of a nonionic surfactant based organogel with aqueous media. Int J Pharm 180(2):211–214

    Article  Google Scholar 

  • Murdan S, Gregoriadis G, Florence A (1999b) Sorbitan monostearate/polysorbate 20 organogels containing niosomes: a delivery vehicle for antigens. Eur J Pharm Sci 8(3):177–185

    Article  Google Scholar 

  • Murdan S, Gregoriadis G, Florence A (1999c) Novel sorbitan monostearate organogels. J Pharm Sci 88(6):608–614

    Article  Google Scholar 

  • Murdan S, van den Bergh B, Gregoriadis G, Florence AT (1999d) Water-in-sorbitan monostearate organogels (water-in-oil gels). J Pharm Sci 88(6):615–619

    Article  Google Scholar 

  • Nasseria A, Aboofazelib R, Zia H, Needhama T (2003) Lecithin—stabilized microemulsion—based organogels for topical application of Ketorolac Tromethamine. II. In vitro release study. Iran J Pharm Res 2:117–123

    Google Scholar 

  • Nastruzzi C (1994) antitumor activity of (Trans) dermally delivered aromatic tetra-amidines. J Controlled Release 29(1–2):53–62

    Article  Google Scholar 

  • Pal K, Banthia A, Majumdar D (2006a) Preparation of novel pH-sensitive hydrogels of carboxymethyl cellulose acrylates: a comparative study. Mater Manuf Processes 21(8):877–882

    Article  Google Scholar 

  • Pal K, Banthia A, Majumdar D (2006b) Polyvinyl alcohol-gelatin patches of salicylic acid: preparation, characterization and drug release studies. J Biomater Appl 0885328206056312

    Google Scholar 

  • Pal K, Banthia A, Majumdar D (2007) Biomedical evaluation of polyvinyl alcohol–gelatin esterified hydrogel for wound dressing. J Mater Sci: Mater Med 18(9):1889–1894

    Google Scholar 

  • Pal K, Banthia A, Majumdar D (2008) Effect of heat treatment of starch on the properties of the starch hydrogels. Mater Lett 62(2):215–218

    Article  Google Scholar 

  • Pal K, Banthia A, Majumdar D (2009) Polymeric hydrogels: characterization and biomedical applications. Des Monomers Polym 12:197–220

    Article  Google Scholar 

  • Plourde F, Motulsky A, Couffin-Hoarau A, Hoarau D, Ong H, Leroux J (2005) First report on the efficacy of L-alanine-based in situ-forming implants for the long-term parenteral delivery of drugs. J Controlled Release 108(2–3):433–441

    Article  Google Scholar 

  • Santos P, Watkinson AC, Hadgraft J, Lane ME (2008) Application of microemulsions in dermal and transdermal drug delivery. J Pharmacol Biophys Res 21(5):246–259

    Google Scholar 

  • Sawant PD, Liu X (2002) Formation and novel thermomechanical processing of biocompatible soft materials. Chem Mater 14(9):3793–3798

    Article  Google Scholar 

  • Scartazzini R, Luisi R (1988) Organogels from lecithins. J Phys Chem 92(3):829–833

    Article  Google Scholar 

  • Schurtenberger P, Peng Q, Leser ME, Luisi PL (1993) Structure and phase behavior of lecithin-based microemulsions: a study of the chain length dependence. J Colloid Interface Sci 156(1):43–51

    Article  Google Scholar 

  • Schurtenberger P, Scartazzini R, Magid JL, Leser ME, Luisi PL (1990) Structural and dynamic properties of polymer-like reverse micelles. J Phys Chem 94(9):3695–3701

    Article  Google Scholar 

  • Shchipunov YA, Dürrschmidt T, Hoffmann H (1999) Electrorheological effects in lecithin organogels with water and glycerol. J Colloid Interface Sci 212(2):390–401

    Article  Google Scholar 

  • Shchipunov YA, Shumilina EV (1995) Lecithin bridging by hydrogen bonds in the organogel. Mater Sci Eng, C 3(1):43–50

    Article  Google Scholar 

  • Shchipunov YA, Schmiedel P (1996) Phase behavior of lecithin at the oil/water interface. Langmuir 12(26):6443–6445

    Article  Google Scholar 

  • Sinha V, Kumar R, Singh G (2009) Ketorolac tromethamine formulations: an overview. Expert Opin Drug Deliv 6(9):961–975

    Article  Google Scholar 

  • Suzuki M, Hanabusa K (2010) Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem Soc Rev 39:455–463

    Article  Google Scholar 

  • Suzuki M, Nigawara T, Yumoto M, Kimura M, Shirai H, Hanabusa K (2003) L-lysine based gemini organogelators: their organogelation properties and thermally stable organogels. Org Biomol Chem 1(22):4124–4131

    Article  Google Scholar 

  • Suzuki M, Setoguchi C, Shirai H, Hanabusa K (2007) Organogelation by polymer organogelators with a L-Lysine derivative: formation of a three-dimensional network consisting of supramolecular and conventional polymers. Chem Eur J 13(29):8193–8200

    Article  Google Scholar 

  • Terech P (1997) Low-molecular weight organogelators. Spec Surf 3(2):208–268

    Google Scholar 

  • Terech P, Weiss R (1997) Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev 97(8):3133–3160

    Article  Google Scholar 

  • Toro-Vazquez J, Morales-Rueda JA, Dibildox-Alvarado E, Charo-Alonso M, Alonzo-Macias M, González-Chávez M (2007) Thermal and textural properties of organogels developed by Candelilla wax in safflower oil. J Am Oil Chem Soc 84(11):989–1000

    Article  Google Scholar 

  • Toshiyuki S, Daisuke O, Kenji H (2003) Viscoelastic behavior of organogels. Riron Oyo Rikigaku Koenkai Koen Ronbunshu 52:477–478

    Google Scholar 

  • Uchegbu I, Vyas S (1998) Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172(1–2):33–70

    Article  Google Scholar 

  • Upadhyay K, Tiwari C, Khopade AJ, Bohidar HB, Jain SK (2007) Sorbitan ester organogels for transdermal delivery of Sumatriptan. Drug Dev Ind Pharm 33(6):617–625

    Article  Google Scholar 

  • Vintiloiu A, Leroux JC (2008) Organogels and their use in drug delivery—a review. J Controlled Release 125:179–192

    Article  Google Scholar 

  • Wendel AKO (1995) Encyclopedia of chemical technology 15:192

    Google Scholar 

  • Willimann HL, Luisi PL (1991) Lecithin organogels as matrix for the transdermal transport of drugs. Biochem Biophys Res Commun 177(3):897–900

    Article  Google Scholar 

  • Willimann H, Luisi PL (1992) Lecithin organogel as matrix for transdermal transport of drugs. J Pharm Sci 81(9):871–874

    Article  Google Scholar 

  • Willis-Goulet H, Schmidt BA, Nicklin CF, Marsella R, Kunkle A, Tebbett I (2003) Comparison of serum dexamethasone concentrations in cats after oral or transdermal administration using pluronic lecithin organogel (PLO): a pilot study. Vet Dermatol 14(2):83–89

    Article  Google Scholar 

  • Wright A, Marangoni A (2006) Formation, structure, and rheological properties of ricinelaidic acid-vegetable oil organogels. J Am Oil Chem Soc 83(6):497–503

    Article  Google Scholar 

  • Xenexlabs. PLO Gel Transderma (2010) [cited 2010 April 25]. Available from: http://www.xenexlabs.com/catalogue.php?cid=4&pid=516

  • Zhao XY, Quan C, Li-Qiang Z, Gao-Yong Z (2006) Rheological properties and microstructures of gelatin-containing microemulsion-based organogels. Colloids Surf, A 281(1–3):67–73

    Article  Google Scholar 

  • Zoumpanioti M, Stamatis H, Xenakis A (2003) Microemulsion-based organogels as matrices for lipase immobilization. Biotechnol Adv 28(3):395–406

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvaraj Mohana Roopan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roopan, S.M., Devipriya, D. (2018). Emerging Trends of Organogels in Drug Chemistry. In: Thakur, V., Thakur, M., Voicu, S. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6080-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6080-9_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6079-3

  • Online ISBN: 978-981-10-6080-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics