Skip to main content

Regulation of Cell Cycle Progression by Circadian Rhythms in Cyanidioschyzon merolae

  • Chapter
  • First Online:
Cyanidioschyzon merolae

Abstract

Cell division in several lineages of eukaryotic algae occurs predominantly during the night. Cell cycle progression is shown to be regulated by circadian rhythms. However, the advantages and their underlying mechanisms conferred by this restriction of cell division to night are poorly understood. By using the unicellular red alga Cyanidioschyzon merolae, we recently showed that the retinoblastoma (RB)-E2F-DP pathway inhibits G1/S transition during the daytime. In C. merolae, E2F is phosphorylated in a time-dependent manner, peaking during the evening, which in turn permits the phosphorylation of RB only when the cell has grown to a certain size threshold. In addition, it is suggested that temporal segregation of photosynthesis during the daytime, which produces reactive oxygen species (ROS), and DNA replication and mitosis during the night is important for eukaryotic algae. Because the temporal segregation of respiratory activity and cell cycle progression has been observed in yeasts and mammalian cells, the temporal restriction of cell cycle progression is probably important for facilitating the safe multiplication of eukaryotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Odstrcil EA et al (2007) Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science 316:1916–1919

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Salathia N et al (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  • Fang SC, Umen JG (2008) A suppressor screen in chlamydomonas identifies novel components of the retinoblastoma tumor suppressor pathway. Genetics 178:1295–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang SC, de los Reyes C et al (2006) Cell size checkpoint control by the retinoblastoma tumor suppressor pathway. PLoS Genet e167:2

    Google Scholar 

  • Farre EM, Weise SE (2012) The interactions between the circadian clock and primary metabolism. Curr Opin Plant Biol 15:293–300

    Article  CAS  PubMed  Google Scholar 

  • Geyfman M, Kumar V et al (2012) Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proc Natl Acad Sci U S A 109:11758–11763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto K, Johnson CH (1995) Is the cell division cycle gated by a circadian clock? The case of Chlamydomonas reinhardtii. J Cell Biol 129:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Johnson CH (2010) Circadian clocks and cell division: what’s the pacemaker? Cell Cycle 9:3864–3873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalska E, Ripperger JA et al (2013) NONO couples the circadian clock to the cell cycle. Proc Natl Acad Sci U S A 110:1592–1599

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Juez E, Pyke KA (2005) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49:557–577

    Article  CAS  PubMed  Google Scholar 

  • Matsuo T, Yamaguchi S et al (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302:255–259

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki M, Misumi O et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  CAS  PubMed  Google Scholar 

  • McClung CR (2006) Plant circadian rhythms. Plant Cell 18:792–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyagishima SY, Fujiwara T et al (2014) Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote. Nat Commun 5:3807

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Johnson CH (2000) Circadian control of cell division in unicellular organisms. Prog Cell Cycle Res 4:185–192

    Article  CAS  PubMed  Google Scholar 

  • Moriyama T, Terasawa K et al (2010) Characterization of cell-cycle-driven and light-driven gene expression in a synchronous culture system in the unicellular rhodophyte Cyanidioschyzon merolae. Microbiology 156:1730–1737

    Article  CAS  PubMed  Google Scholar 

  • Moulager M, Monnier A et al (2007) Light-dependent regulation of cell division in Ostreococcus: evidence for a major transcriptional input. Plant Physiol 144:1360–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moulager M, Corellou F et al (2010) Integration of light signals by the retinoblastoma pathway in the control of S phase entry in the picophytoplanktonic cell Ostreococcus. PLoS Genet 6:e1000957

    Article  PubMed  PubMed Central  Google Scholar 

  • Olson BJ, Oberholzer M et al (2010) Regulation of the Chlamydomonas cell cycle by a stable, chromatin-associated retinoblastoma tumor suppressor complex. Plant Cell 22:3331–3347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamiya H, Iwamura T et al (1953) Correlation between photosynthesis and light-independent metabolism in the growth of Chlorella. Biochim Biophys Acta 12:23–40

    Article  CAS  PubMed  Google Scholar 

  • Trimarchi JM, Lees JA (2002) Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3:11–20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our study was partly supported by Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research 25251039 (to S.M.) and by the Core Research for Evolutional Science and Technology Program of the Japan Science and Technology Agency (to S.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Miyagishima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miyagishima, S. (2017). Regulation of Cell Cycle Progression by Circadian Rhythms in Cyanidioschyzon merolae . In: Kuroiwa, T., et al. Cyanidioschyzon merolae. Springer, Singapore. https://doi.org/10.1007/978-981-10-6101-1_12

Download citation

Publish with us

Policies and ethics