Skip to main content

Emerging Role of Glutamate Receptors in Pathophysiology of Depression

  • Chapter
  • First Online:
Understanding Depression
  • 2393 Accesses

Abstract

Glutamate is one of the most abundant amino acids in the human brain. Glutamate is extensively involved in the metabolism and neurotransmission nearly in the entire regions of the brain. As the gradient of glutamate level between the intracellular and extracellular space is high, potent regulatory systems with glutamate receptors are required to maintain such gradient discrepancy. Maybe the most potent regulatory step in the modulation of the action of the glutamate is through excitatory amino acid transporters type 2 (EAAT2). Unlike other major neurotransmitter receptors such as serotonin, norepinephrine, and dopamine transporters, EAAT2 are mostly present in the membrane surface of the astrocytes. The initiation and termination of the glutamatergic cycle is mainly modulated in the tripartite synapses.

Major types of presynaptic and postsynaptic glutamate receptors consist of ionotropic, kainate, and metabotropic glutamate receptors. Each group of glutamate receptors is again further categorized into subgroups. Under physiological conditions, the action of the ionotropic glutamate receptors enhances major function of glutamate and contributes to the essential role of glutamate such as long-term potentiation in the neuromolecular level and cognitive and emotional function in the clinical manifestation. The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA) are mainly involved in the neuroprotective role such as synaptogenesis and neuroplasticity.

Depression is closely associated with the disturbances in the glutamate receptors as well as complex interactions with neuroinflammatory, neuroendocrine, and neurotrophic factors, although which one is a consequence or cause. First, if the action of the EAAT2 is insufficient, spillover of glutamate occurs, and then excessive glutamate binds to the various receptors in the tripartite and extrasynaptic receptors. Although the metabotropic glutamate receptors (mGluR) have complicated role according to the subtypes and microenvironment in which they work, dysfunctional mGluR may deepen the excessive glutamate in the tripartite synapse. Currently, the resultant overexpression of the extrasynaptic N-methyl-d-aspartate receptors is considered one of the essential causative stages in the pathophysiology of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem. 1992;267(19):13361–8.

    CAS  PubMed  Google Scholar 

  • Aparicio A, Perea JM, Pecharroman L, Aguilar E, Ortega RM. Magnesium intake and odds of depression in institutionalized elderly people without antidepressant treatment. Ann Nutr Metab. 2013;63:744.

    Google Scholar 

  • Aronica E, Gorter JA, Ijlst-Keizers H, Rozemuller AJ, Yankaya B, Leenstra S, et al. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci. 2003;17(10):2106–18.

    Article  Google Scholar 

  • Balu DT, Coyle JT. The NMDA receptor ‘glycine modulatory site’ in schizophrenia: D-serine, glycine, and beyond. Curr Opin Pharmacol. 2015;20:109–15.

    Article  CAS  Google Scholar 

  • Balu DT, Takagi S, Puhl MD, Benneyworth MA, Coyle JT. D-serine and serine racemase are localized to neurons in the adult mouse and human forebrain. Cell Mol Neurobiol. 2014;34(3):419–35.

    Article  CAS  Google Scholar 

  • Barbour B, Keller BU, Llano I, Marty A. Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar. Purkinje cells. Neuron. 1994;12(6):1331–43.

    Article  CAS  Google Scholar 

  • Beschorner R, Dietz K, Schauer N, Mittelbronn M, Schluesener HJ, Trautmann K, et al. Expression of EAAT1 reflects a possible neuroprotective function of reactive astrocytes and activated microglia following human traumatic brain injury. Histol Histopathol. 2007;22(5):515–26.

    CAS  PubMed  Google Scholar 

  • Bruno V, Caraci F, Copani A, Matrisciano F, Nicoletti F, Battaglia G. The impact of metabotropic glutamate receptors into active neurodegenerative processes: a “dark side” in the development of new symptomatic treatments for neurologic and psychiatric disorders. Neuropharmacology. 2017;115:180–92.

    Article  CAS  Google Scholar 

  • Cartmell J, Schoepp DD. Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem. 2000;75(3):889–907.

    Article  CAS  Google Scholar 

  • Chretien F, Le Pavec G, Vallat-Decouvelaere AV, Delisle MB, Uro-Coste E, Ironside JW, et al. Expression of excitatory amino acid transporter-1 (EAAT-1) in brain macrophages and microglia of patients with prion diseases. J Neuropathol Exp Neurol. 2004;63(10):1058–71.

    Article  CAS  Google Scholar 

  • Cuccurazzu B, Bortolotto V, Valente MM, Ubezio F, Koverech A, Canonico PL, et al. Upregulation of mGlu2 receptors via NF-kappaB p65 acetylation is involved in the proneurogenic and antidepressant effects of acetyl-L-carnitine. Neuropsychopharmacology. 2013;38(11):2220–30.

    Article  CAS  Google Scholar 

  • Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105.

    Article  CAS  Google Scholar 

  • Daniels RW, Collins CA, Chen K, Gelfand MV, Featherstone DE, DiAntonio A. A single vesicular glutamate transporter is sufficient to fill a synaptic vesicle. Neuron. 2006;49(1):11–6.

    Article  CAS  Google Scholar 

  • Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci. 1998;18(10):3606–19.

    Article  CAS  Google Scholar 

  • Deng PY, Xiao Z, Yang C, Rojanathammanee L, Grisanti L, Watt J, et al. GABA(B) receptor activation inhibits neuronal excitability and spatial learning in the entorhinal cortex by activating TREK-2 K+ channels. Neuron. 2009;63(2):230–43.

    Article  CAS  Google Scholar 

  • Eby GA, Eby KL. Rapid recovery from major depression using magnesium treatment. Med Hypotheses. 2006;67(2):362–70.

    Article  CAS  Google Scholar 

  • Erecinska M, Silver IA. Metabolism and role of glutamate in mammalian brain. Prog Neurobiol. 1990;35(4):245–96.

    Article  CAS  Google Scholar 

  • Furukawa H, Gouaux E. Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J. 2003;22(12):2873–85.

    Article  CAS  Google Scholar 

  • Goeldner C, Ballard TM, Knoflach F, Wichmann J, Gatti S, Umbricht D. Cognitive impairment in major depression and the mGlu2 receptor as a therapeutic target. Neuropharmacology. 2013;64:337–46.

    Article  CAS  Google Scholar 

  • Gu G, Lorrain DS, Wei H, Cole RL, Zhang X, Daggett LP, et al. Distribution of metabotropic glutamate 2 and 3 receptors in the rat forebrain: implication in emotional responses and central disinhibition. Brain Res. 2008;1197:47–62.

    Article  CAS  Google Scholar 

  • Hashimoto A, Oka T, Nishikawa T. Anatomical distribution and postnatal changes in endogenous free D-aspartate and D-serine in rat brain and periphery. Eur J Neurosci. 1995;7(8):1657–63.

    Article  CAS  Google Scholar 

  • Herman MA, Jahr CE. Extracellular glutamate concentration in hippocampal slice. J Neurosci. 2007;27(36):9736–41.

    Article  CAS  Google Scholar 

  • Herring BE, Nicoll RA. Long-term potentiation: from CaMKII to AMPA receptor trafficking. Annu Rev Physiol. 2016;78:351–65.

    Article  CAS  Google Scholar 

  • Hoffpauir BK, Gleason EL. Activation of mGluR5 modulates GABA(A) receptor function in retinal amacrine cells. J Neurophysiol. 2002;88(4):1766–76.

    Article  CAS  Google Scholar 

  • Hohnholt MC, Andersen VH, Andersen JV, Christensen SK, Karaca M, Maechler P, et al. Glutamate dehydrogenase is essential to sustain neuronal oxidative energy metabolism during stimulation. J Cereb Blood Flow Metab. 2017. Jan [Epub ahead of print]

    Google Scholar 

  • Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN, et al. The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian. CNS. J Neurosci. 2012;32(17):6000–13.

    Article  CAS  Google Scholar 

  • Kim YK, Na KS. Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;70:117–26.

    Article  CAS  Google Scholar 

  • Kim YK, Na KS, Myint AM, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:277–84.

    Article  CAS  Google Scholar 

  • Kirov GK, Tsachev KN. Magnesium, schizophrenia and manic-depressive disease. Neuropsychobiology. 1990;23(2):79–81.

    Article  CAS  Google Scholar 

  • Krebs HA. Metabolism of amino-acids: the synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J. 1935;29(8):1951–69.

    Article  CAS  Google Scholar 

  • Kugler P, Schmitt A. Glutamate transporter EAAC1 is expressed in neurons and glial cells in the rat nervous system. Glia. 1999;27(2):129–42.

    Article  CAS  Google Scholar 

  • Lee A, Anderson AR, Barnett NL, Stevens MG, Pow DV. Alternate splicing and expression of the glutamate transporter EAAT5 in the rat retina. Gene. 2012;506(2):283–8.

    Article  CAS  Google Scholar 

  • Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci. 1995;15(3 Pt 1):1835–53.

    Article  CAS  Google Scholar 

  • Leombruni P, Miniotti M, Colonna F, Sica C, Castelli L, Bruzzone M, et al. A randomised controlled trial comparing duloxetine and acetyl L-carnitine in fibromyalgic patients: preliminary data. Clin Exp Rheumatol. 2015;33(1 Suppl 88):S82–5.

    PubMed  Google Scholar 

  • Lewerenz J, Maher P. Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence? Front Neurosci. 2015;9:469.

    Article  Google Scholar 

  • Li B, Lv J, Wang W, Zhang D. Dietary magnesium and calcium intake and risk of depression in the general population: a meta-analysis. Aust N Z J Psychiatry. 2017;51(3):219–29.

    Article  Google Scholar 

  • Matosin N, Fernandez-Enright F, Frank E, Deng C, Wong J, Huang XF, et al. Metabotropic glutamate receptor mGluR2/3 and mGluR5 binding in the anterior cingulate cortex in psychotic and nonpsychotic depression, bipolar disorder and schizophrenia: implications for novel mGluR-based therapeutics. J Psychiatry Neurosci. 2014;39(6):407–16.

    Article  Google Scholar 

  • Matsugami TR, Tanemura K, Mieda M, Nakatomi R, Yamada K, Kondo T, et al. From the cover: indispensability of the glutamate transporters GLAST and GLT1 to brain development. Proc Natl Acad Sci U S A. 2006;103(32):12161–6.

    Article  CAS  Google Scholar 

  • McCullumsmith RE, Meador-Woodruff JH. Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology. 2002;26(3):368–75.

    Article  CAS  Google Scholar 

  • McKenna MC. Glutamate pays its own way in astrocytes. Front Endocrinol. 2013;4:191.

    Article  Google Scholar 

  • Mechawar N, Savitz J. Neuropathology of mood disorders: do we see the stigmata of inflammation? Transl Psychiatry. 2016;6(11):e946.

    Article  CAS  Google Scholar 

  • Mori H, Morishita Y, Mori Y, Yoshimi N, Sugie S, Tanaka T. Effect of magnesium hydroxide on methylazoxymethanol acetate-induced epithelial proliferation in the large bowels of rats. Cancer Lett. 1992;62(1):43–8.

    Article  CAS  Google Scholar 

  • Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A. 2000;97(9):4926–31.

    Article  CAS  Google Scholar 

  • Na KS, Chang HS, Won E, Han KM, Choi S, Tae WS, et al. Association between glucocorticoid receptor methylation and hippocampal subfields in major depressive disorder. PLoS One. 2014;9(1):e85425.

    Article  Google Scholar 

  • Na KS, Won E, Kang J, Chang HS, Yoon HK, Tae WS, et al. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder. Sci Rep. 2016;6:21089.

    Article  CAS  Google Scholar 

  • Nakajima K, Kohsaka S. Microglia: activation and their significance in the central nervous system. J Biochem. 2001;130:169–75.

    Article  CAS  Google Scholar 

  • Nasca C, Bigio B, Zelli D, Nicoletti F, McEwen BS. Mind the gap: glucocorticoids modulate hippocampal glutamate tone underlying individual differences in stress susceptibility. Mol Psychiatry. 2015;20(6):755–63.

    Article  CAS  Google Scholar 

  • Nechifor M. Magnesium in major depression. Magnes Res. 2009;22(3):163S–6S.

    CAS  PubMed  Google Scholar 

  • Otte DM, Barcena de Arellano ML, Bilkei-Gorzo A, Albayram O, Imbeault S, Jeung H, et al. Effects of chronic D-serine elevation on animal models of depression and anxiety-related behavior. PLoS One. 2013;8(6):e67131.

    Article  CAS  Google Scholar 

  • Ottersen OP, Laake JH, Reichelt W, Haug FM, Torp R. Ischemic disruption of glutamate homeostasis in brain: quantitative immunocytochemical analyses. J Chem Neuroanat. 1996;12(1):1–14.

    Article  CAS  Google Scholar 

  • Papouin T, Ladepeche L, Ruel J, Sacchi S, Labasque M, Hanini M, et al. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell. 2012;150(3):633–46.

    Article  CAS  Google Scholar 

  • Parmentier-Batteur S, Hutson PH, Menzel K, Uslaner JM, Mattson BA, O’Brien JA, et al. Mechanism based neurotoxicity of mGlu5 positive allosteric modulators–development challenges for a promising novel antipsychotic target. Neuropharmacology. 2014;82:161–73.

    Article  CAS  Google Scholar 

  • Partridge JG, Lewin AE, Yasko JR, Vicini S. Contrasting actions of group I metabotropic glutamate receptors in distinct mouse striatal neurones. J Physiol. 2014;592(13):2721–33.

    Article  CAS  Google Scholar 

  • Peng S, Zhang Y, Zhang J, Wang H, Ren B. Glutamate receptors and signal transduction in learning and memory. Mol Biol Rep. 2011;38(1):453–60.

    Article  CAS  Google Scholar 

  • Petr GT, Sun Y, Frederick NM, Zhou Y, Dhamne SC, Hameed MQ, et al. Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci. 2015;35(13):5187–201.

    Article  CAS  Google Scholar 

  • Petralia RS, Wang YX, Niedzielski AS, Wenthold RJ. The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience. 1996;71(4):949–76.

    Article  CAS  Google Scholar 

  • Pin JP, Duvoisin R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology. 1995;34(1):1–26.

    Article  CAS  Google Scholar 

  • Pin JP, Gomeza J, Joly C, Bockaert J. The metabotropic glutamate receptors: their second intracellular loop plays a critical role in the G-protein coupling specificity. Biochem Soc Trans. 1995;23(1):91–6.

    Article  CAS  Google Scholar 

  • Pitt D, Nagelmeier IE, Wilson HC, Raine CS. Glutamate uptake by oligodendrocytes: implications for excitotoxicity in multiple sclerosis. Neurology. 2003;61(8):1113–20.

    Article  CAS  Google Scholar 

  • Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, et al. Localization of neuronal and glial glutamate transporters. Neuron. 1994;13(3):713–25.

    Article  CAS  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH. D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A. 1995;92(9):3948–52.

    Article  CAS  Google Scholar 

  • Schmid A, Hallermann S, Kittel RJ, Khorramshahi O, Frolich AM, Quentin C, et al. Activity-dependent site-specific changes of glutamate receptor composition in vivo. Nat Neurosci. 2008;11(6):659–66.

    Article  CAS  Google Scholar 

  • Schousboe A. Transport and metabolism of glutamate and GABA in neurons are glial cells. Int Rev Neurobiol. 1981;22:1–45.

    Article  CAS  Google Scholar 

  • Schousboe A. A tribute to Mary C. McKenna: glutamate as energy substrate and neurotransmitter-functional interaction between neurons and astrocytes. Neurochem Res. 2017;42(1):4–9.

    Article  CAS  Google Scholar 

  • Scofield MD, Kalivas PW. Astrocytic dysfunction and addiction: consequences of impaired glutamate homeostasis. Neuroscientist. 2014;20(6):610–22.

    Article  CAS  Google Scholar 

  • Sepkuty JP, Cohen AS, Eccles C, Rafiq A, Behar K, Ganel R, et al. A neuronal glutamate transporter contributes to neurotransmitter GABA synthesis and epilepsy. J Neurosci. 2002;22(15):6372–9.

    Article  CAS  Google Scholar 

  • Sibson NR, Shen J, Mason GF, Rothman DL, Behar KL, Shulman RG. Functional energy metabolism: in vivo 13C-NMR spectroscopy evidence for coupling of cerebral glucose consumption and glutamatergic neuronalactivity. Dev Neurosci. 1998;20(4-5):321–30.

    Article  CAS  Google Scholar 

  • Singh I, Morgan C, Curran V, Nutt D, Schlag A, McShane R. Ketamine treatment for depression: opportunities for clinical innovation and ethical foresight. Lancet Psychiatry. 2017;4(5):419–26.

    Article  Google Scholar 

  • Stafford MM, Brown MN, Mishra P, Stanwood GD, Mathews GC. Glutamate spillover augments GABA synthesis and release from axodendritic synapses in rat hippocampus. Hippocampus. 2010;20(1):134–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, Schoepp DD. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov. 2005;4(2):131–44.

    Article  CAS  Google Scholar 

  • Terunuma M, Haydon PG, Pangalos MN, Moss SJ. Purinergic receptor activation facilitates astrocytic GABAB receptor calcium signalling. Neuropharmacology. 2015;88:74–81.

    Article  CAS  Google Scholar 

  • Thomas CG, Tian H, Diamond JS. The relative roles of diffusion and uptake in clearing synaptically released glutamate change during early postnatal development. J Neurosci. 2011;31(12):4743–54.

    Article  CAS  Google Scholar 

  • Tordera RM, Totterdell S, Wojcik SM, Brose N, Elizalde N, Lasheras B, et al. Enhanced anxiety, depressive-like behaviour and impaired recognition memory in mice with reduced expression of the vesicular glutamate transporter 1 (VGLUT1). Eur J Neurosci. 2007;25(1):281–90.

    Article  CAS  Google Scholar 

  • Tzingounis AV, Wadiche JI. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci. 2007;8(12):935–47.

    Article  CAS  Google Scholar 

  • Uezato A, Meador-Woodruff JH, McCullumsmith RE. Vesicular glutamate transporter mRNA expression in the medial temporal lobe in major depressive disorder, bipolar disorder, and schizophrenia. Bipolar Disord. 2009;11(7):711–25.

    Article  CAS  Google Scholar 

  • van Landeghem FK, Weiss T, von Deimling A. Expression of PACAP and glutamate transporter proteins in satellite oligodendrocytes of the human CNS. Regul Pept. 2007;142(1–2):52–9.

    Article  Google Scholar 

  • Vargas KJ, Terunuma M, Tello JA, Pangalos MN, Moss SJ, Couve A. The availability of surface GABA B receptors is independent of gamma-aminobutyric acid but controlled by glutamate in central neurons. J Biol Chem. 2008;283(36):24641–8.

    Article  CAS  Google Scholar 

  • Verkhratsky A, Nedergaard M, Hertz L. Why are astrocytes important? Neurochem Res. 2015;40(2):389–401.

    Article  CAS  Google Scholar 

  • Veruki ML, Morkve SH, Hartveit E. Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nat Neurosci. 2006;9(11):1388–96.

    Article  CAS  Google Scholar 

  • Wang J, Zhang K, Chen X, Liu X, Teng H, Zhao M, et al. Epigenetic activation of ASCT2 in the hippocampus contributes to depression-like behavior by regulating D-serine in Mice. Front Mol Neurosci. 2017;10:139.

    Article  Google Scholar 

  • Whittle N, Li L, Chen WQ, Yang JW, Sartori SB, Lubec G, et al. Changes in brain protein expression are linked to magnesium restriction-induced depression-like behavior. Amino Acids. 2011;40(4):1231–48.

    Article  CAS  Google Scholar 

  • Wright RA, Arnold MB, Wheeler WJ, Ornstein PL, Schoepp DD. [3H]LY341495 binding to group II metabotropic glutamate receptors in rat brain. J Pharmacol Exp Ther. 2001;298(2):453–60.

    CAS  PubMed  Google Scholar 

  • Yang D, Gereau RW. Peripheral group II metabotropic glutamate receptors (mGluR2/3) regulate prostaglandin E2-mediated sensitization of capsaicin responses and thermal nociception. J Neurosci. 2002;22(15):6388–93.

    Article  CAS  Google Scholar 

  • Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, et al. Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci U S A. 2003;100(25):15194–9.

    Article  CAS  Google Scholar 

  • Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63(8):856–64.

    Article  CAS  Google Scholar 

  • Zerangue N, Kavanaugh MP. Flux coupling in a neuronal glutamate transporter. Nature. 1996;383(6601):634–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ku Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Na, KS., Kim, YK. (2018). Emerging Role of Glutamate Receptors in Pathophysiology of Depression. In: Kim, YK. (eds) Understanding Depression . Springer, Singapore. https://doi.org/10.1007/978-981-10-6580-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6580-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6579-8

  • Online ISBN: 978-981-10-6580-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics