Skip to main content

Is Mitochondrial Cell Fragility a Cell Weakness?

  • Chapter
  • First Online:
Mitochondrial DNA and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1038))

Abstract

Mitochondrial dysfunction has historically been linked to the cessation of cell function and ageing. Downstream effects such as reduced calcium buffering capacity, elevated levels of reactive oxygen species, and alterations in adenosine-5′-triphosphate are linked to a wide variety of pathological diseases. The importance of the mitochondria has increasingly been highlighted due to its potential as a therapeutic target for drug intervention and cell elimination in cancer. In addition, due to its origin, drugs targeting bacteria are required to be thoroughly tested prior to administration to prevent toxicity for the mitochondria. In this chapter, we will discuss a variety of factors that could influence mitochondrial dysfunction and highlight potential solutions to these. A comprehensive understanding regarding the mechanisms underlying mitochondrial dysfunction could aid in developing future therapeutic targets in multiple pathologies such as cancer and liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lane N, Martin W. The energetics of genome complexity. Nature. 2010;467(7318):929–34.

    Article  CAS  PubMed  Google Scholar 

  2. Shyh-Chang N, Daley GQ, Cantley LC. Stem cell metabolism in tissue development and aging. Development. 2013;140(12):2535–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sahin E, DePinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature. 2010;464(7288):520–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bao L, Diao H, Dong N, Su X, Wang B, Mo Q, Yu H, Wang X, Chen C. Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol. 2016;32(6):469–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fallahian F, Aghaei M, Abdolmohammadi MH, Hamzeloo-Moghadam M. Molecular mechanism of apoptosis induction by Gaillardin, a sesquiterpene lactone, in breast cancer cell lines. Cell Biol Toxicol. 2015;31(6):295–305.

    Article  CAS  PubMed  Google Scholar 

  6. Lippai M, Szatmári Z. Autophagy—from molecular mechanisms to clinical relevance. Cell Biol Toxicol. 2017;33(2):145–68.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou Y, Zhang S, Dai C, Tang S, Yang X, Li D, Zhao K, Xiao X. Quinocetone triggered ER stress-induced autophagy via ATF6/DAPK1-modulated mAtg9a trafficking. Cell Biol Toxicol. 2016;32(2):141–52.

    Article  CAS  PubMed  Google Scholar 

  8. Sidor-Kaczmarek J, Cichorek M, Spodnik JH, Wójcik S, Moryś J. Proteasome inhibitors against amelanotic melanoma. Cell Biol Toxicol. 2017;33:1–17.

    Article  Google Scholar 

  9. Mbah NE, Overmeyer JH, Maltese WA. Disruption of endolysosomal trafficking pathways in glioma cells by methuosis-inducing indole-based chalcones. Cell Biol Toxicol. 2017;33(3):263–82.

    Article  CAS  PubMed  Google Scholar 

  10. Soltani B, Ghaemi N, Sadeghizadeh M, Najafi F. Curcumin confers protection to irradiated THP-1 cells while its nanoformulation sensitizes these cells via apoptosis induction. Cell Biol Toxicol. Dec. 2016;32(6):543–61.

    Article  CAS  PubMed  Google Scholar 

  11. Divolis G, Mavroeidi P, Mavrofrydi O, Papazafiri P. Differential effects of calcium on PI3K-Akt and HIF-1α survival pathways. Cell Biol Toxicol. 2016;32(5):437–49.

    Article  CAS  PubMed  Google Scholar 

  12. Chiang H-C, Wang C-H, Yeh S-C, Lin Y-H, Kuo Y-T, Liao C-W, Tsai F-Y, Lin W-Y, Chuang W-H, Tsou T-C. Comparative microarray analyses of mono(2-ethylhexyl)phthalate impacts on fat cell bioenergetics and adipokine network. Cell Biol Toxicol. 2017:1–16.

    Google Scholar 

  13. Seo JB, Jung S-R, Hille B, Koh D-S. Extracellular ATP protects pancreatic duct epithelial cells from alcohol-induced damage through P2Y1 receptor-cAMP signal pathway. Cell Biol Toxicol. Jun. 2016;32(3):229–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zerin T, Kim J-S, Gil H-W, Song H-Y, Hong S-Y. Effects of formaldehyde on mitochondrial dysfunction and apoptosis in SK-N-SH neuroblastoma cells. Cell Biol Toxicol. Dec. 2015;31(6):261–72.

    Article  CAS  PubMed  Google Scholar 

  15. Cristofori P, Sauer AV, Trevisan A. Three common pathways of nephrotoxicity induced by halogenated alkenes. Cell Biol Toxicol. Feb. 2015;31(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  16. Ganta KK, Mandal A, Chaubey B. Depolarization of mitochondrial membrane potential is the initial event in non-nucleoside reverse transcriptase inhibitor efavirenz induced cytotoxicity. Cell Biol Toxicol. Feb. 2017;33(1):69–82.

    Article  PubMed  Google Scholar 

  17. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlöf S, Oldfors A, Wibom R, Törnell J, Jacobs HT, Larsson N-G. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429(6990):417–23.

    Article  CAS  PubMed  Google Scholar 

  18. Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab. 2007;5(4):265–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kang S-J, Lee H-M, Park Y-I, Yi H, Lee H, So B, Song J-Y, Kang H-G. Chemically induced hepatotoxicity in human stem cell-induced hepatocytes compared with primary hepatocytes and HepG2. Cell Biol Toxicol. 2016;32(5):403–17.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu L, Hou Y, Zhao M, Yang M, Fu X, Sun J, Fu X, Shao L, Zhang H, Fan C, Gao H, Sun B. Caudatin induces caspase-dependent apoptosis in human glioma cells with involvement of mitochondrial dysfunction and reactive oxygen species generation. Cell Biol Toxicol. 2016;32(4):333–45.

    Article  CAS  PubMed  Google Scholar 

  21. Arumugam P, Samson A, Ki J, Song JM. Knockdown of clusterin alters mitochondrial dynamics, facilitates necrosis in camptothecin-induced cancer stem cells. Cell Biol Toxicol. 2017;33(3):307–21.

    Article  CAS  PubMed  Google Scholar 

  22. Medvedev R, Hildt E, Ploen D. Look who’s talking—the crosstalk between oxidative stress and autophagy supports exosomal-dependent release of HCV particles. Cell Biol Toxicol. 2017;33(3):211–31.

    Article  CAS  PubMed  Google Scholar 

  23. Opperman CM, Sishi BJN. Tumor necrosis factor alpha stimulates p62 accumulation and enhances proteasome activity independently of ROS. Cell Biol Toxicol. 2015;31(2):83–94.

    Article  CAS  PubMed  Google Scholar 

  24. Xu M, Wang X. Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone. Cell Biol Toxicol. 2017;33(4):361–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by Zhongshan Distinguished Professor Grant (XDW), National Nature Science Foundation of China (91230204, 81270099, 81320108001, 81270131, 81300010), Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100), Operation funding of Shanghai Institute of Clinical Bioinformatics, Ministry of Education for Academic Special Science and Research Foundation for PhD Education (20130071110043), and National Key Research and Development Program (2016YFC0902400, 2017YFSF090207).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William Wang or Hao Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Editor(s) (if applicable) and The Author(s) 2018

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, W., Hou, J., Zhu, Z., Fang, H. (2017). Is Mitochondrial Cell Fragility a Cell Weakness?. In: Sun, H., Wang, X. (eds) Mitochondrial DNA and Diseases. Advances in Experimental Medicine and Biology, vol 1038. Springer, Singapore. https://doi.org/10.1007/978-981-10-6674-0_8

Download citation

Publish with us

Policies and ethics