Skip to main content

Degree Correlations in Two Layer Growth Model with Nonlinear Preferential Attachment Rule

  • Conference paper
  • First Online:
Theoretical Computer Science (NCTCS 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 768))

Included in the following conference series:

Abstract

Most real-world complex systems have multiple subsystems and layers of connectivity. All such systems can be described and represented in terms of multiplex network model, where the edges at each layer stand for the interactions of a different type between the same set of vertices. To better characterize and simulate such multiplex systems, we propose a new two layers network growth model based on nonlinear preferential attachment rule. Moreover, we obtain the joint degree distribution expression of the model via the rate equation approach at the steady state, and discuss the joint degree distribution and conditional average degree for the models of two different vertex weighted function, respectively. It was found that some existing multiplex network model is one of special cases of the model, and the corresponding joint degree distribution and the conditional average degree can also be obtained by the joint degree distribution expression of the model. Also, we observe that the conditional average degree expression is identical for the models of two different vertex weighted function. To verify our theoretical results, we perform Monte Carlo simulations for the models of two different vertex weighted function. Experiments indicate that our theoretical results are in accordance with the Monte Carlo simulation results well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faioutsos, M., Faioutsos, P., Faioutsos, C.: On powerlaw relationships of the internet topology. ACM SIGCOMM Comput. Commun. Rev. 29, 251–262 (1999)

    Article  Google Scholar 

  2. Albert, R.: Diameter of the world wide web. Nat. Int. J. Sci. 401, 130–131 (1999)

    Google Scholar 

  3. Dorogovtsev, S.N., Mendes, J.F.F., Oliveira, J.G.: Frequency of occurrence of numbers in the world wide web. Phys. A Stat. Mech. Appl. 360, 548–556 (2005)

    Article  Google Scholar 

  4. Newman, M.E.J.: From the cover: the structure of scientific collaboration networks. Proc. Nat. Acad. Sci. 98, 404–409 (2001)

    Article  MATH  Google Scholar 

  5. Savić, M., Ivanović, M., Radovanović, M., et al.: The structure and evolution of scientific collaboration in serbian mathematical journals. Scientometrics 101, 1805–1830 (2014)

    Article  Google Scholar 

  6. Boccaletti, S., Latora, V., Moreno, Y., et al.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Vazquez, A.: Degree correlations and clustering hierarchy in networks: measures, origin and consequences. Brain Res. 2, 393–396 (2002)

    Google Scholar 

  8. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  10. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. U.S.A. 99, 7821 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nicosia, V., Bianconi, G., Latora, V., et al.: Growing multiplex networks. Phys. Rev. Lett. 111, 058701 (2013)

    Article  Google Scholar 

  13. Kim, J.Y., Goh, K.I.: Coevolution and correlated multiplexity in multiplex networks. Phys. Rev. Lett. 111, 058702 (2013)

    Article  Google Scholar 

  14. Nicosia, V., Bianconi, G., Latora, V., et al.: Nonlinear growth and condensation in multiplex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 90, 042807 (2013)

    Article  Google Scholar 

  15. Fotouhi, B., Momeni, N.: Growing multiplex networks with arbitrary number of layers. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92, 062812 (2015)

    Article  MathSciNet  Google Scholar 

  16. Fotouhi, B., Momeni, N.: Inter-layer degree correlations in heterogeneously growing multiplex networks. In: Mangioni, G., Simini, F., Uzzo, S., Wang, D. (eds.) Complex Networks VI. Studies in Computational Intelligence, vol. 597, pp. 159–170. Springer International Publishing, Cham (2015). doi:10.1007/978-3-319-16112-9_16

    Google Scholar 

  17. Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89, 032804 (2014)

    Article  Google Scholar 

  18. Solá, L., Romance, M., Criado, R., et al.: Eigenvector centrality of nodes in multiplex networks. Chaos 23, 033131 (2013)

    Article  MATH  Google Scholar 

  19. Criado, R., Flores, J., Amo, A.G.D.: A mathematical model for networks with structures in the mesoscale. Int. J. Comput. Math. 89, 291–309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Min, B., Yi, S.D., Lee, K.M., et al.: Network robustness of multiplex networks with interlayer degree correlations. Phys. Rev. E. 89, 042811 (2014)

    Article  Google Scholar 

  21. Nicosia, V., Latora, V.: Measuring and modeling correlations in multiplex networks. Phys. Rev. E. 92, 032805 (2014)

    Article  Google Scholar 

  22. Domenico, M.D., Solèribalta, A., Cozzo, E., et al.: Mathematical formulation of multi-layer networks. Phys. Rev. E. 3, 4192–4195 (2013)

    Google Scholar 

  23. Kivelä, M., Arenas, A., Barthelemy, M., et al.: Multilayer networks. SSRN Electron. J. 2, 261–268 (2013)

    Google Scholar 

  24. Gómezgardeñes, J.: Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110, 028701 (2013)

    Article  Google Scholar 

  25. Cozzo, E., Baños, R.A., Meloni, S., et al.: Contact-based social contagion in multiplex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88, 050801 (2013)

    Article  Google Scholar 

  26. Granell, C., Gómez, S., Arenas, A.: Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys. Rev. Lett. 111, 128701 (2013)

    Article  Google Scholar 

  27. Zhao, D., Li, L., Peng, H., et al.: Multiple routes transmitted epidemics on multiplex networks. Phys. Lett. A. 378, 770–776 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Buono, C., Alvarezzuzek, L.G., Macri, P.A., et al.: Epidemics in partially overlapped multiplex networks. Plos One 9, 92200 (2014)

    Article  Google Scholar 

  29. Gómezgardeñes, J., Reinares, I., Arenas, A., et al.: Evolution of cooperation in multiplex networks. Sci. Rep. 2, 620 (2012)

    Article  Google Scholar 

  30. Nicosia, V., Valencia, M., Chavez, M., et al.: Remote synchronization reveals network symmetries and functional modules. Phys. Rev. Lett. 110, 174102 (2012)

    Article  Google Scholar 

  31. Zhou, J.: Percolation in multiplex networks with overlap. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88, 052811 (2013)

    Article  Google Scholar 

  32. Bianconi, G., Dorogovtsev, S.N.: Multiple percolation transitions in a configuration model of a network of networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89, 062814 (2014)

    Article  Google Scholar 

  33. Battiston, F., Nicosia, V., Latora, V.: Biased random walks on multiplex networks. Comput. Sci. 18, 043035 (2015)

    Google Scholar 

  34. Guo, Q., Cozzo, E., Zheng, Z., et al.: Lévy random walks on multiplex networks. Sci. Rep. 6, 37641 (2016)

    Article  Google Scholar 

  35. Zadorozhnyi, V.N., Yudin, E.B.: Growing network: models following nonlinear preferential attachment rule. Phys. A Stat. Mech. Appl. 428, 111–132 (2015)

    Article  MathSciNet  Google Scholar 

  36. Lu, Y.J., Xu, D.Y., Zhou, J.C.: Vertex degree distribution in growth models with nonlinear preferential attachment rule. J. Beijing Univ. Posts Telecommun. 39, 116–123 (2016)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61262006, 61462001, 61540050, 61762019), the Major Applied Basic Research Program of Guizhou Province (Grant No. JZ20142001), and the Graduate Student Innovation Foundation of Guizhou University (Grant No. 2016047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoyun Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Lu, Y., Xu, D., Zhou, J. (2017). Degree Correlations in Two Layer Growth Model with Nonlinear Preferential Attachment Rule. In: Du, D., Li, L., Zhu, E., He, K. (eds) Theoretical Computer Science. NCTCS 2017. Communications in Computer and Information Science, vol 768. Springer, Singapore. https://doi.org/10.1007/978-981-10-6893-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6893-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6892-8

  • Online ISBN: 978-981-10-6893-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics