Skip to main content

Microbial Transformation of Heavy Metals

  • Chapter
  • First Online:
Waste Bioremediation

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

In natural environments, the average abundance of heavy metals is generally low and much of that sequestered in sediments, soil and mineral deposits may be biologically unavailable. Microorganisms have ability to adapt and live in all ecological condition. In natural habitat, the cause for microbes on heavy metal depends on the physico-chemical properties of the environmental condition. Microbes can metabolize the metal ion and yield energy through oxidation and reduction process by dissolving them. Many trace metals are necessary for growth and metabolism at low concentrations, (e.g. Co, Cu, Ni, Mo, Fe, Zn), and microorganism acquires mechanisms of varying specificity for the intracellular increase from the external environment. The molecular mechanism of microorganism and plants in the removal of toxic heavy metals into nontoxic form using plants and microorganisms is well studied, and this has many biotechnology implications in the bioremediation of heavy metal contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Google Scholar 

  • Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86:24–36

    Article  CAS  Google Scholar 

  • Amoroso MJ, Castro GR, Durain A, Peroud O, Oliver G, Hill RT (2001) Chromium accumulation by two Streptomyces spp. isolated from riverine sediments. J Ind Microbiol Biotechnol 26:p210–p215

    Article  Google Scholar 

  • Blanco A (2000) Immobilization of nonviable cyanobacteria and their use for heavy metal adsorption from water. In Oluguin EJ, Sanchez, Hernandez E (eds) Environmental biotechnology and cleaner bioprocesses. Taylor and Amp Francis, Philadelphia, p 135

    Google Scholar 

  • Culotta VC, Howard WR, Liu XF (1994) CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae. J Biol Chem 269:25295–25302

    Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  CAS  Google Scholar 

  • Doelman P, Jansen E, Michels M, van Til M (1994) Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Biol Fertil Soil 17:177–1784

    Article  CAS  Google Scholar 

  • Favero N, Costa P, Massimino ML (1991) In vitro uptake of cadmium by basidiomycete Pleurotusostreatus. Biotechnol Lett 10:701–704

    Google Scholar 

  • Gabriel J, Mokrejs M, Bily J, Rychlovsky P (1994) Accumulation of heavy metal by some Woodrooting fungi. Folia Microbiol 39:115–118

    Article  CAS  Google Scholar 

  • Gabriel J, Kofronova O, Rychlovsky P, Krenzelok M (1996) Accumulation and effect of cadmium in the wood rotting basidiomycete, Daedaleaquercina. Bull Environ Contam Toxicol 57:383–390

    Article  CAS  Google Scholar 

  • Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms, vol 46, no 8. Springer, Berlin, pp 834–840

    Google Scholar 

  • Gaur N, Flora G, Yadav M, Tiwari A (2014) A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Process Impacts 16:180–193

    Article  CAS  Google Scholar 

  • Goblenz A, Wolf K, Bauda P (1994) The role of glutathione biosynthesis in heavy metal resistance in the fission yeast Schizosaccharomyces pombe. FEMS Microbiol Rev 14:303–308

    Article  Google Scholar 

  • Gunasekaran P, Muthukrishnan J, Rajendran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41(1):935–944

    Google Scholar 

  • Gupta A, Morby AP, Turner JS, Whitton BA, Robinson NJ (1993) Deletion within the metallothionein locus of cadmium-tolerant Synechococcus PCC-6301 involving a highly iterated palindrome (hip1). Mol Microbiol 7:189–195

    Article  CAS  Google Scholar 

  • Li F, Tan TC (1994) Monitoring BOD in the presence of heavy metal ions using a poly (4-vinylpyridine) coated microbial sensor. Biosens Bioelectron 9:445–455

    Article  CAS  Google Scholar 

  • Lioyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  Google Scholar 

  • Meyer J, Schmidt A, Michalke K, Hensel R (2007) Volatilization of metals and metalloids by the microbial population of an alluvial soil. Syst Appl Microbiol 31:81–87

    Article  Google Scholar 

  • Mohamed ZA (2001) Removal of cadmium and manganese by a non-toxic strain of the fresh water Cyanobacterium Gloeothece magna. Water Res 35(18):p4405–p4409

    Article  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lacto strains. Cryst Growth Des 2:293–298

    Article  CAS  Google Scholar 

  • Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut 180:p199–p212

    Article  Google Scholar 

  • Nies DH (2003) Efflux mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:p313–p339

    Article  Google Scholar 

  • Nies DH, Silver S (1989) Plasmid determined inducible efflux is responsible for resistance to cadmium, zinc and cobalt in Alcaligenes eutrophus. J Bacteriol 171:896–900

    Article  CAS  Google Scholar 

  • Philip L, Iyengar L, Venkobacher L (2000) Site of interaction of copper on. Water Air Soil Pollut 119:11–21

    Google Scholar 

  • Roane TM, Josephson KL, Pepper IL (2001) Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol 67:p3208–p3215

    Article  Google Scholar 

  • Sand W, Rohde K, Sabotke B, Zenneck C (1992) Evaluation of Leptospirillum ferrooxidans for leaching. Appl Environ Microbiol 58:85–92

    Google Scholar 

  • Sar P, D’Souza SF (2001) Biosorptive uranium uptake by Pseudomonas strain: characterization and equilibrium studies. J Chem Technol Biotechnol 76:1286–1294

    Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Spark DL, Chemistry Environmental soil (2003) Academic Press. San Diego, California

    Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In: Reviews of environmental contamination and toxicology. Springer, New York, pp 33–52

    Google Scholar 

  • Vieira R, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3:17–24

    Google Scholar 

  • White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biochemical processes for treatment of contamination. FEMS Microbiol Rev 20:503–516

    Google Scholar 

  • Wood JM, Wang HK (1983) Microbiol resistance to heavy metals. Environ Sci Technol 17:582–590

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Raja Sathendra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raja Sathendra, E., Praveen Kumar, R., Baskar, G. (2018). Microbial Transformation of Heavy Metals. In: Varjani, S., Gnansounou, E., Gurunathan, B., Pant, D., Zakaria, Z. (eds) Waste Bioremediation. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7413-4_13

Download citation

Publish with us

Policies and ethics