Skip to main content

Agroforestry Practices in Temperate Regions of the World

  • Chapter
  • First Online:
Agroforestry

Abstract

Temperate agroforestry systems are being practiced in the continents, like North America, Europe, highlands of the Asia, Oceania and Chile and Argentina of the South America. Distinct seasonality of the temperate regions has given rise to agroforestry practices, like windbreaks and shelterbelts, silvopastoral systems, forest grazing, woodlots, intercropped orchards and agri-horti-silviculture systems. The main tree species of agroforestry systems in the temperate parts of the world are Pinus radiata, Populus spp., Salix spp., Eucalyptus spp., Paulownia spp. and Robinia pseudoacacia and various fruit tree species, like apple, plum, apricot, peach and pear. Temperate agroforestry systems, though less diverse than tropical agroforestry systems, are playing an important role in income generation, climatic modification and biodiversity conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amatya G, Chang SX, Beare MH, Mead DJ (2002) Soil properties under Pinus radiata-ryegrass silvopastoral system in New Zealand. Part II. C and N of soil microbial biomass, and soil N dynamics. Agrofor Syst 54(2):149–160

    Article  Google Scholar 

  • Anderson GW, Moore RW, Jenkins PJ (1988) The integration of pasture, livestock and widely-spaced pine in South West Western Australia. Agroforestry Systems 6(1-3):195–211

    Article  Google Scholar 

  • Balain E, Naiman RJ (2005) Abundance and production of dominant riparian trees in the lowland floodplain of the Queets River, Washington. Ecosystems 8(7):841–861

    Article  Google Scholar 

  • Baldy C, Dupraz C, Schilizzi S (1993) Vers de nouvellesagroforestriesen climate climatstemperes et Mediterraneans. Premiere partie: aspects agronomiques. Cahiers Agricultures 2:375–386

    Google Scholar 

  • Bari MA, Schofield NJ (1991) Effects of agroforestry-pasture associations on groundwater level and salinity. Agrofor Syst 16(1):13–31

    Article  Google Scholar 

  • Brandle JR, Hoghes L, Zhou XH (2004) Windbreaks in North American agricultural systems. Agrofor Syst 61(1):65–68

    Google Scholar 

  • Brandle JR, Hodges L, Tyndall J, Sudmeyer RA (2009) Windbreak practices. In: Garret HE (ed) North American agroforestry, an integrated science and practice, 2nd edn. American Society of Agronomy, Madison, pp 75–104

    Google Scholar 

  • Cervinka V, Finch C, Jorgensen G, Karajeh F, Martin M, Menzies F, Tanji K (1994) Agroforestry as a method of salt and selenium management on irrigated land. Westside RCD, Department of Food and Agriculture USDA/SCS, Fresno

    Google Scholar 

  • Colletti J, Mize C, Schultz R, Faltonson R, Skadberg A, Mottila J, Thompson M, Scharf R, Anderson I, Accola C, Buxton D, Brown R (1994) An alley cropping biofuels system: operation economics. In: Schultz RC, Colletti JP (eds) Opportunities for agroforestry in the temperate zone worldwide: Proceedings of the third North American Agroforestry conference, August 15–18 1993. Department of Forestry, Iowa State University, Ames

    Google Scholar 

  • de Montard FX (1988) Etude des espaces pastoraux sous couvert forestier en moyenne montagne humide. Application a la Margeride. In: Hubert B, Girault N (eds) De la Touffe d’Herbe au Paysage. INRA-SAD, Paris

    Google Scholar 

  • Dresner S, Ekins P, McGeevor K, Tomei J (2007) Forest and climate change global understandings and possible responses. In: Freer-Smith PH, Boradmeadow MSJ, Lynch JM (eds) Forestry and climate change. CAB International, Wallingford, pp 38–48

    Chapter  Google Scholar 

  • Dube F, Thevathasan NV, Zagal E, Gordon AM, Stolpe NB, Espinosa M (2011) Carbon sequestration potential of silvipastoral system in Chilean Patagonia. In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems- opportunities and challenges. Springer, Dordrecht, pp 101–127

    Chapter  Google Scholar 

  • Dupraz C, Newman SM (1997) Temperate agroforestry: the European way. CAB International-Press, Wallingford, pp 181–230

    Google Scholar 

  • Feldhake CM, Schumann CM (2005) Tree establishment for a temperate agroforest in central Appalachia, USA. Agrofor Syst 65(3):187–195

    Article  Google Scholar 

  • Felger RS (1979) Ancient crops for twenty-first century. In: Ritchie GA (ed) New agricultural crops, symposium no 38. American Association for Advancement of Science, Westview, Boulder, pp 5–20

    Google Scholar 

  • Felkar P (1979) Mesquite: an all-purpose leguminous arid land tree. In: Ritchie GA (ed) New agricultural crops, symposium no 38. American Association for Advancement of Science, Westview, Boulder, pp 89–125

    Google Scholar 

  • Gadgil RL, Charlton JFL, Sandberg AM, Allan PJ (1986) Relative growth and persistence of planted legumes in a mid-rotation radiata pine plantation. Forest Ecol Manag 14(3):113–124

    Article  Google Scholar 

  • Garrett HE, Rietveld WJ, Fisher RF, Kral DM, Viney MK (2000) North American agroforestry: an integrated science and practices. American Society of Agronomy, Madison, pp 132–162

    Google Scholar 

  • Giddens M, Parfitt RL, Percival HJ (1997) Comparison of some soil properties under Pinus radiata and improved pasture. N Z J Agric Res 40(3):409–416

    Article  Google Scholar 

  • Giese LAB, Aust WM, Kolka RK, Trettin CC (2003) Biomass and carbon pools of disturbed riparian forests. Forest Ecol Manag 180(1–3):493–508

    Article  Google Scholar 

  • Gordon AM, Newman SM (1997) Temperate agroforestry systems. CAB International Press, Wallingford, p 264

    Google Scholar 

  • Gordon AM, Thevathasan NV (2005) How much carbon can be stored in Canadian agroecosystems using silvipastoral approach? In: Mosquera-Losada MR, McAdam J, Riguiero-Rodriguez A (eds) Silvipastoralism and sustainable land management. CABI Publishing, Wallingford, pp 210–218

    Google Scholar 

  • Gordon AM, Williams PA, Taylor EP (1989) Site index curves for Norway spruce in Southern Ontario. North J Appl For 6(1):23–26

    Google Scholar 

  • Halls LK, Burton GW, Southwell BL (1957) Some results of seeding and fertilization to improve Southern forest ranges. USDA Forest Service Southeastern Forest Experimentation Station. Research Paper No. 78 Ashville

    Google Scholar 

  • Hart RH, Lewis CE, Monson WG (1970) Effect of nitrogen and shading on yield and quality of grasses grown under young slash pines. Agron J 62:285–287

    Article  Google Scholar 

  • Hawke MF, Knowles RL (1997) Temperate agroforestry systems in New Zealand. In: Gordon AM, Newman SM (eds) Temperate agroforestry systems. CAB International, London

    Google Scholar 

  • Houghton RA, Hackler JL (2000) Changes in the terrestrial carbon storage in the United States. 1. The role of agriculture and forestry. Glob Ecol Biogeogr 9:125–144

    Article  Google Scholar 

  • Isenhart TM, Schultz RC, Colletti JP, Rodrigues CA (1996) Constructed wetlands as components of riparian management systems in areas of agricultural tile drainage. In: Ehrenreich DL, Ehrenreich DL, Lee HW (eds) Growing a sustainable Future. Proceedings of fourth North American agroforestry conference, 23–28 July 1995. University of Idaho, Boise, p 130

    Google Scholar 

  • Jacke D, Toensmeier E (2005) Edible forest gardens (volume 1 and 2). Chelesa Green Publishing Company, White River Junction, p 617

    Google Scholar 

  • Joffre R (1988) The Dehesa: an agrosilvopastoral system of the Mediterranean region with special reference to the Sierra Morena area of Spain. Agrofor Syst 6(1):71–96

    Article  Google Scholar 

  • Joshi MR (2011) Class note of agroforestry. Kathmandu Forestry College, Koteshwork. http://www.singhranendra.com.np

  • Kort J, Turnock R (1999) Carbon reservoir and biomass in Canadian prairie shelterbelts. Agrofor Syst 44(2):175–186

    Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. Forest Ecology and Management 220(1-3):242–258

    Article  Google Scholar 

  • Lelle MA, Gold MA (1994) Agroforestry systems for temperate climates: lessons from Rome Italy. Forest Conserv History 38(3):118–126

    Article  Google Scholar 

  • Lewis CE, Burton GW, Monson WG, McCormick WC (1983) Integration of pines, pastures and cattle in South Georgia, USA. Agrofor Syst 1(1):277–297

    Article  Google Scholar 

  • Lowrance RR, Gordon AM, Gillespie TJ (1992) Erosion and deposition in a field/forest system estimated using cesium-137 activity. J Soil Water Conserv 43:195–199

    Google Scholar 

  • Lowther WL, Barry TN (1985) Nutritional value of lotus grown on low fertility soils. Proc N Z Soc Anim Prod 45:125–127

    Google Scholar 

  • Manning AD, Fischer J, Lindenmayer DB (2006) Scattered trees are keystone structures-implications for conservation. Biol Conserv 132(3):311–321

    Article  Google Scholar 

  • Marquez CO, Cambardella CA, Isenhart TM, Schultz RC (1999) Assessing soil quality in riparian buffer by testing organic matter fractions in central Iowa, USA. Agrofor Syst 44(2):133–140

    Google Scholar 

  • McElwee H, Knowles RL (2000) Estimating canopy closure and understorey pasture production in New Zealand grown poplar plantations. N Z J For Sci 30(3):422–435

    Google Scholar 

  • Moore RW, Bird PR (1997) Agroforestry systems in temperate Australia. CAB International Press, Wallingford, pp 119–146

    Google Scholar 

  • Moreno G, Obrador JJ (2007) Effects of trees and understorey management on soil fertility and nutritional status of holm oaks in Spanish dehesas. Nutrient Cycling in Agroecosystems 78(3):253–264

    Article  CAS  Google Scholar 

  • Moulis I, Guillerm JL (1994) Interactions between vine plant, cover crop and weeds in the grass cover technique for vineyards in a Mediterranean region. In: Proceedings of the 5th EWRS Mediterranean symposium Perugia, Italy, 6–8 June, 1994. Weed control in sustainable agriculture in the Mediterranean area, pp 311–318

    Google Scholar 

  • Mughal AH, Khan MA (2007) An overview of agroforestry in Kashmir valley. In: Puri S, Panwar P (eds) Agroforestry systems and practices. New India Publishing Agency, New Delhi, pp 43–54

    Google Scholar 

  • Mughal AH, Makaya AS (2000) Suitable Agroforestry models for degraded and wastelands of Srinagar District Kashmir. In: Khan MA (ed) Environment biodiversity conservation. APH Publishing Corporation, New Dehi, pp 493–500

    Google Scholar 

  • Nabhan GP (1982a) Gathering the Desert. University of Arizona Press, Tucson, p 209

    Google Scholar 

  • Nabhan GP (1982b) The Desert smells like rain. North Point Press, Albany, p 148

    Google Scholar 

  • Nabhan GP (1985) Gathering the desert. University of Arizona Press, Tucson, p 209

    Google Scholar 

  • Nair PKR (1993) An introduction to agroforestry. Kluwer Academic Publishers, London, pp 443–465

    Book  Google Scholar 

  • Neider R, Benbi DK, Isermann K (2003) Soil organic matter dynamics. In: Benbi DK, Neider R (eds) Handbook of processes and modelling in soilplant analysis. Haworth Press, Binghamton, pp 346–408

    Google Scholar 

  • Nii-Annang S, Grunewald H, Freese D, Huttl R, Dilly O (2009) Microbial activity, organic C accumulation and 13C abundance in soils under aley cropping systems after 9 years of recultivation of quaternary deposits. Biol Fertil Soils 45(5):531–538

    Article  CAS  Google Scholar 

  • Ntayombya P, Gordon AM (1995) Effects of black locust on productivity and nitrogen nutrition of intercropped barley. Agrofor Syst 29(3):239–254

    Article  Google Scholar 

  • Parfitt RL, Percival HJ, Dahlgren RA, Hill LF (1997) Soil and solution chemistry under pasture and radiata pine in New Zealand. Plant Soil 191(2):279–290

    Article  CAS  Google Scholar 

  • Pearson HA (1975) Exotic grass yields under southern pines. USDA Forest Service Research note SO-201. Southern Forest Experimentation Station, New Orleans, p 3

    Google Scholar 

  • Peichl M, Thevathasan NV, Gordon AM, Huss J, Abohassan RA (2006) Carbon sequestration potentials in temperate tree based intercropping systems south Ontario, Canada. Agrofor Syst 66(3):243–257

    Article  Google Scholar 

  • Percival NS, Hawke MF (1985) Agroforestry development and research in New Zealand. N Z Agric Sci 19:86–92

    Google Scholar 

  • Quinkenstein A, Böhm C, da Silva ME, Freese D, Hüttl RF (2011) Assessing carbon sequestration in short rotation coppices of Robinia pseudoacacia L. on marginal sites in northeast Germany. In: Kumar BM, PKR N (eds) Carbon sequestration potential of agroforestry systems-opportunities and challenges. Springer, Dordrecht, pp 201–216

    Chapter  Google Scholar 

  • Radcliffe JE (1985) Shelterbelt increases dryland pasture growth in Canterbury. Proc New Zealand Grassland Assoc 46:51–56

    Google Scholar 

  • Reid R, Wilson G (1985) Agroforestry in Australia and New Zealand. Goddard and Dobson, Box Hill, p 255

    Google Scholar 

  • Rhoades CC, Nissen TM, Kettler JS (1998) Soil nitrogen dynamics in alley cropping and no-till systems on ultisols of Georgia Piedmont, USA. Agrofor Syst 39(1):31–44

    Article  Google Scholar 

  • Richardson SD (1966) Forestry in communist China. John Hopkins University Press, Baltimore, p 332

    Google Scholar 

  • Rodrigues CA (1996) Reduction of nitrate and atrazine concentrations by a muti-species buffer strip. In: Ehrenreich JH, Lee HW (eds) Growing a sustainable future. Proceedings of the fourth North American agroforestry conference 23–28 July 1995 University of Idaho, Boise

    Google Scholar 

  • Schoeneberger MM (2009) Agroforestry: working trees for sequestering carbon on agricultural lands. Agrofor Syst 75(1):27–37

    Article  Google Scholar 

  • Schultz RC, Colletti JP, Isenhart TM, Rodrigues CA, Faltonson RR, Simpkins WW, Thompson ML (1996) Design options for riparian zone management. In: Ehrenreich JH, Ehrenreich DL, Lee HW (eds) Growing a sustainable future. Proceedings of the fourth North American agroforestry conference, 23–28 July 1995. University of Idaho, Boise

    Google Scholar 

  • Secretariat of Convention on Biological Diversity (SCBD) (2003) Interlinkages between biological diversity and climate change Advice on integration of biological considerations into the implementation of the United Nations framework convention on climate change and its Kyoto protocol, CBD Technical Series No. 10, Montreal SCBD, pp 61–62

    Google Scholar 

  • Sharrow SH (1994) Sheep as a silvicultural management tool in temperate conifer forests. Sheep Res J (Spec Issue): 97–104

    Google Scholar 

  • Sharrow SH, Ismail S (2004) Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agroforestry Systems 60(2):123–130

    Article  Google Scholar 

  • Smith WR (1982) Energy from forest biomass. Academic, London, p 275

    Google Scholar 

  • Sun H, Tang Y, Xie J (2008) Contour hedgerow intercropping in the mountains of China: a review. Agrofor Syst 73(1):65–76

    Article  Google Scholar 

  • Thakur PS, Thakur CL (2002) Agroforestry systems for resources conservation and livelihood security in lower Himalayas (Panwar P, Tiwari AK, Dadhwal KS (eds)). New India Publishing Agency, New Delhi, pp 47–66

    Google Scholar 

  • Theng BKG, Tate KR, Sollins P, Moris N, Madkarni N, Tate R (1989) Constituents of organic matter in temperate and tropical soils. In: Coleman DC, Oades JM, Uehara G (eds) Dynamics of soil organic matter in tropical ecosystems. College of Tropical Agriculture and Human Resources, University of Hawaii, Honululu, pp 5–32

    Google Scholar 

  • Thevathasan NV, Gordon AM, Simpson JA, Reynolds PE, Price GW, Zhang P (2004) Biophysical and ecological interactions in a temperate tree-based intercropping system. J Crop Improv 12(1–2):339–363

    Article  Google Scholar 

  • Timberman C (1975) Controlled grazing of brush fields. Internal report, Umpqua National Forest Tiller Ranger District, Oregon, p 2

    Google Scholar 

  • Tufekcioglu A, Raich JW, Isenhart TM, Schultz RC (1999) Fine root dynamics, coarse root biomass, root distribution and soils respiration in a multispecies riparian buffer in central Iowa, USA. Agrofor Syst 44(2):163–174

    Google Scholar 

  • Verma KS, Bhardwaj DR (2007) Agroforestry systems in Himachal Pradesh. In: Puri S, Panwar P (eds) Agroforestry systems and practices. New India Publishing Agency, New Delhi, pp 67–93

    Google Scholar 

  • Wang XC (1991) The development and utilisation of tree crops in Changbai mountain area. In: Shi KS (ed) Development of forestry science and technology in China. China Science and Technology Press, Beijing

    Google Scholar 

  • Welsh R (1993) Practical, profitable and sustainable: innovative management strategies on four NYS dairy farms. Community Agriculture Development Series, Farming Alternatives Program, Cornell University, Ithaca

    Google Scholar 

  • Williams PA, Koblents H, Gordon AM (1996) Bird use of two intercropped plantations in southern Ontario. In: Ehrenreich DL, Lee HW (eds) Growing a sustainable future: Proceedings of the fourth North American agroforestry conference, 23–28 July 1995, University of Idaho, Boise, pp 158–162

    Google Scholar 

  • Wood GM (1987) Animals for biological brush control. Agron J 79(2):319–321

    Article  Google Scholar 

  • Wu YY, Dalmaico RV (1991) Energy balance, water use and wheat yield in a Paulownia-wheat intercropped field. In: Zhu ZH, Cai MT, Wang SJ, Jiang YX (eds) Agroforestry systems in China. IDRC, Canada and CAF China

    Google Scholar 

  • Wu Y, Zhu ZH (1997) Temperate agroforestry in China. CAB International-Press, Wallingford, pp 149–177

    Google Scholar 

  • Zhu ZH (1991) Evaluation and model optimisation of paulownia intercropping system- a project summary report. In: Zhu ZH, Cai MT, Wang SJ, Jiang YX (eds) Agroforestry systems in China. IDRC, Canada and CAF China, pp 30–43

    Google Scholar 

  • Zhu ZH, Xiong YG, Lu XY (1986) Paulownia cultivation and utilization in China. Asian Network for Biological Sciences and IDRC, Canada, p 65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhardwaj, D.R., Navale, M.R., Sharma, S. (2017). Agroforestry Practices in Temperate Regions of the World. In: Dagar, J., Tewari, V. (eds) Agroforestry. Springer, Singapore. https://doi.org/10.1007/978-981-10-7650-3_6

Download citation

Publish with us

Policies and ethics