Skip to main content

Targeted Learning of Optimal Individualized Treatment Rules Under Cost Constraints

  • Chapter
  • First Online:
Biopharmaceutical Applied Statistics Symposium

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

Abstract

We consider a general resource-allocation problem, namely, to maximize a mean outcome given a cost constraint, through the choice of a treatment rule that is a function of an arbitrary fixed subset of an individual’s covariates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We are abusing notation here for the sake of convenience by using \(\varPsi (\cdot )\) to denote the mapping both from the full distribution to \(\mathbb {R}^d\) and from the relevant components to \(\mathbb {R}^d\).

  2. 2.

    The nuisance parameters are those components \(g_0\) of the efficient influence curve\(D^*(Q_0,g_0)\) that \(\varPsi (Q_0)\) does not depend on.

  3. 3.

    It is not hard to extend this model to incorporate uncertainty in E(A|W, Z) for calculating \(c_T(Z,W)\), and thus estimating \(c_T(Z,W)\) from the data, given fixed functions \(c_Z, \ c_A\). There is a correction term that gets added to the efficient influence curve.

  4. 4.

    We are only making this assumption for the sake of easing notation. We can forgo this assumption by introducing notation; i.e., \(Z=l(V)\) is the lower cost intent-to-treat value for a stratum defined by covariates V.

  5. 5.

    The \(U'_Y\) term is an exogenous r.v. whose purpose is for sampling binary Y with mean \(\tilde{f}_Y(W,Z,A,\tilde{U}_Y)\).

References

  • Angrist, J. D., & Krueger, A. B. (1991). Does compulsory school attendance affect schooling and earnings? The Quarterly Journal of Economics, 106(4), 979–1014.

    Article  Google Scholar 

  • Angrist, J. D., Imbens, G. W., & Rubin, D. B. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association, 91, 444–471.

    Article  Google Scholar 

  • Brookhart, M. A., & Schneeweiss, S. (2007). Preference-based instrumental variable methods for the estimation of treatment effects. International Journal of Biostatistics, 3(1), 1–14.

    Article  MathSciNet  Google Scholar 

  • Brookhart, M. A., Rassen, J. A., & Schneeweiss, S. (2010). Instrumental variable methods in comparative safety and effectiveness research. Pharmacoepidemiology and Drug Safety, 19(6), 537–554.

    Article  Google Scholar 

  • Chakraborty, B., & Moodie, E. E. (2013). Statistical methods for dynamic treatment regimes. Berlin Heidelberg New York: Springer.

    Book  Google Scholar 

  • Chakraborty, B., Laber, E., & Zhao, Y. (2013). Inference for optimal dynamic treatment regimes using an adaptive m-out-of-n bootstrap scheme. Biometrics, 69(3), 714–723.

    Article  MathSciNet  Google Scholar 

  • Chesney, M. A. (2006). The elusive gold standard. Future perspectives for HIV adherence assessment and intervention. Journal of Acquired Immune Deficiency Syndromes, 43(1), S149–155.

    Article  Google Scholar 

  • Editors: National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. (2011). Toward precision medicine: Building a knowledge network for biomedical research and a new taxonomy of disease. National Academies Press (US), Washington DC.

    Google Scholar 

  • Gruber, S., & van der Laan, M. (2010). A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome. International Journal of Biostatistics, 6(1). Article 26.

    Google Scholar 

  • Imbens, G. W., & Angrist, J. D. (1994). Identification and estimation of local average treatment effects. Econometrica, 62, 467–475.

    Article  Google Scholar 

  • Karp, R. (1972). Reducibility among combinatorial problems. New York Berlin Heidelberg: Springer.

    Book  Google Scholar 

  • Luedtke, A., & van der Laan, M. (2016a). Optimal individualized treatments in resource-limited settings. International Journal of Biostatistics, 12(1), 283–303.

    Article  MathSciNet  Google Scholar 

  • Luedtke, A., & van der Laan, M. (2016b). Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy. Annals of Statistics, 44(2), 713–742.

    Article  MathSciNet  Google Scholar 

  • Newey, W. (1990). Semiparametric efficiency bounds. Journal of Applied Econometrics, 5(2), 99–135.

    Article  Google Scholar 

  • Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge University Press.

    Google Scholar 

  • Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. in Proceeding of the Second Seattle Symposium in Biostatistics (Vol. 179, pp. 189–326).

    Google Scholar 

  • Toth, B. (2016). Targeted learning of individual effects and individualized treatments using an instrumental variable. PhD dissertation, U.C. Berkeley.

    Google Scholar 

  • Toth, B., & van der Laan, M. (2016). TMLE for marginal structural models based on an instrument. U.C. Berkeley Division of Biostatistics Working Papers Series, working paper 350.

    Google Scholar 

  • van der Laan, M., & Rose, S. (2011). Targeted learning: Causal inference for observational and experimental data. New York: Springer.

    Book  Google Scholar 

  • van der Laan, M., Rubin, D. (2006). Targeted maximum likelihood learning. International Journal of Biostatistics, 2(1). Article 11.

    Google Scholar 

  • van der Laan, M., Polley, E. C. & Hubbard, A. (2007). Super learner. Statistical Applications in Genetics and Molecular Biology, 6(1). Article 25.

    Google Scholar 

  • Zhang, B., Tsiatis, A., Davidian, M., Zhang, M., & Laber, E. (2012). A robust method for estimating optimal treatment regimes. Biometrics, 68, 1010–1018.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boriska Toth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toth, B., van der Laan, M. (2018). Targeted Learning of Optimal Individualized Treatment Rules Under Cost Constraints. In: Peace, K., Chen, DG., Menon, S. (eds) Biopharmaceutical Applied Statistics Symposium . ICSA Book Series in Statistics. Springer, Singapore. https://doi.org/10.1007/978-981-10-7820-0_1

Download citation

Publish with us

Policies and ethics