Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 277 Accesses

Abstract

In the past decade, great achievements have been obtained in terms of sequences of Precambrian geological events, crustal growth and evolution, and Paleoproterozoic tectonic framework of the North China Craton. However, some key scientific issues are still unresolved, particularly the timing and tectonic model of Archean crustal growth and evolution, Archean tectonic framework of the North China Craton (especially the Eastern Block), and late Paleoproterozoic to Mesoproterozoic geodynamic processes. It is noteworthy that crustal evolution and geodynamic processes are essentially controlled by magma convection and crust-mantle interactions at any tectonic environments. Therefore, comprehensive studies of the nature and evolution of the magma sources and crust-mantle interactions for different episodes of Precambrian mafic to felsic rocks are key to our understanding of both the late Archean to Paleoproterozoic crustal growth and evolution as well as geodynamic evolution of the North China Craton. In this dissertation, systematic studies of geology, petrology, zircon U–Pb isotopic chronology and Lu–Hf isotopes, and whole-rock major and trace elements were conducted on the Neoarchean greenstone metavolcanic rocks and granitoid gneisses in Western Liaoning, late Paleoproterozoic Jianping diorite-monzonite-syenite suite and Pinggu K-rich volcanic rocks, as well as ~1.23 Ga mafic dykes in the Western Liaoning-Northeastern Hebei Provinces. All these studies are combined, aiming to (1) decipher the nature of magma sources, genesis, and crust-mantle interactions for each episode of lithological unit or assemblage; (2) establish the prolonged Neoarchean to Mesoproterozoic evolution of the lithospheric mantle and crust-mantle interactions; and (3) provide further constraints on the Precambrian crustal formation and evolution as well as geodynamic evolution of the North China Craton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson T (2002) Correlation of common lead in U–Pb analyses that do not report 204Pb. Chem Geol 192:59–79

    Article  Google Scholar 

  2. Angerer T, Kerrich R, Hagemann SG (2013) Geochemistry of a komatiitic, boninitic, and tholeiitic basalt association in the Mesoarchean Koolyanobbing greenstone belt, Southern Cross Domain, Yilgarn craton: implications for mantle sources and geodynamic setting of banded iron formation. Precambr Res 224:110–128

    Article  Google Scholar 

  3. Arndt NT (2008) Komatiites. Cambridge University Press, Cambridge, p 467

    Book  Google Scholar 

  4. Bai X, Liu SW, Guo RR, Zhang LF, Wang W (2014) Zircon U–Pb–Hf isotopes and geochemistry of Neoarchean dioritic-trondhjemitic gneisses, Eastern Hebei, North China Craton: constraints on petrogenesis and tectonic implications. Precambr Res 251:1–20

    Article  Google Scholar 

  5. Bédard JH (2013) How many arcs can dance on the head of a plume?: A ‘Comment’ on: A critical assessment of Neoarchean ‘plume only’ geodynamics: evidence from the Superior province, by Derek Wyman, Precambrian Research, 2012. Precambr Res 229:189–197

    Article  Google Scholar 

  6. Bédard JH (2006) A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochimica et Cosmochimica Acta 70:1188–1214

    Article  Google Scholar 

  7. Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) T TEMORA 1 a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170

    Article  Google Scholar 

  8. Blichert-Toft J, Albarède F (1997) The Lu–Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  9. Blichert-Toft J, Arndt NT, Ludden JN (1996) Precambrian alkaline magmatism. Lithos 37:97–111

    Article  Google Scholar 

  10. Campbell IH, Griffiths RW, Hill RI (1989) Melting in an Archean mantle plume: heads it’s basalts, tails it’s komatiites. Nature 339:697–699

    Article  Google Scholar 

  11. Castillo PR, Solidum RU, Punongbayan RS (2002) Origin of high field strength element enrichment in the Sulu Arc, southern Philippines, revisited. Geology 30:707–710

    Article  Google Scholar 

  12. Castillo PR, Rigby SJ, Solidum RU (2007) Origin of high field strength element enrichment in volcanic arcs: geochemical evidence from the Sulu Arc, Southern Philippines. Lithos 97:271–288

    Article  Google Scholar 

  13. Chen LW, Huang BC, Yi ZY, Zhao J, Yan YG (2013) Paleomagnetism of ca. 1.35 Ga sills in northern North China Craton and implications for paleogeographic reconstruction of the Mesoproterozoic supercontinent. Precambr Res 228:36–47

    Article  Google Scholar 

  14. Condie KC (2002) Breakup of a Paleoproterozoic supercontinent. Gondwana Res 5:41–43

    Article  Google Scholar 

  15. Condie KC (1981) Archean greenstone belts. Elsevier, Amsterdam, pp 1–425

    Google Scholar 

  16. Cui PL, Sun JF, Sha DM (2013) Oldest zircon xenocryst (4.17 Ga) from the North China Craton. Int Geol Rev 55:1902–1908

    Article  Google Scholar 

  17. De Wit M (2004) Archean greenstone belts do contain fragments of opholites. In: Kusky TM (ed) Precambrian ophiolites and related rocks. Elsevier, Amsterdam, pp 599–614

    Chapter  Google Scholar 

  18. Diwu CR, Sun Y, Guo AL et al (2011) Crustal growth in the North China Craton at ~2.5 Ga: evidence from in situ zircon U–Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng complex. Gondwana Res 20:149–170

    Article  Google Scholar 

  19. Furnes H, De Wit M, Robins B (2013) A review of new interpretations of the tectonostratigraphy, geochemistry and evolution of the Onverwacht Suite, Barberton Greenstone Belt, South Africa. Gondwana Res 23:403–428

    Article  Google Scholar 

  20. Furnes H, De Wit M, Staudigel H et al (2007) A vestige of Earth’s oldest ophiolite. Science 315:1704–1706

    Article  Google Scholar 

  21. Falloon TJ, Danyushevsky LV (2000) Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. J Petrol 41:257–283

    Article  Google Scholar 

  22. Gao LZ, Zhang CH, Yin CY, Shi XY, Wang ZQ, Liu YM, Liu PJ, Tang F, Song B (2008) SHRIMP zircon ages: basis for refining the chronostratigraphic classification of the Meso- and Neoproterozoic strata in North China old land. Acta Geoscientica Sinica 29:366–376 (in Chinese with English abstract)

    Google Scholar 

  23. Geng YS, Du LL, Ren LD (2012) Growth and reworking of the early Precambrian continental crust in the North China Craton: constraints from zircon Hf isotopes. Gondwana Res 21:517–529

    Article  Google Scholar 

  24. Geng YS, Liu FL, Yang C (2006) Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication. Acta Geol Sin (English version) 80:819–833

    Google Scholar 

  25. Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  26. Guo RR, Liu SW, Santosh M et al (2013) Geochemistry, zircon U–Pb geochronology and Lu–Hf isotopes of metavolcanics from eastern Hebei reveal Neoarchean subduction tectonics in the North China Craton. Gondwana Res 24:664–686

    Article  Google Scholar 

  27. Guo JH, Peng P, Chen Y, Jiao SJ, Windley BF (2012) UHT sapphirine granulite metamorphism at 1.93–1.92 Ga caused by gabbronorite intrusions: implications for tectonic evolution of the northern margin of the North China Craton. Precambr Res 222–223:124–142

    Article  Google Scholar 

  28. Guo JH, O’Brien PJ, Zhai MG (2002) High-pressure granulites in the Sanggan area, North China Craton: metamorphic evolution, P–T paths and geotectonic significance. J Metamorph Geol 20:741–756

    Article  Google Scholar 

  29. Hollings P (2002) Archean Nb-enriched basalts in the northern Superior Province. Lithos 64:1–14

    Article  Google Scholar 

  30. Han BF, Zhang L, Wang YM, Song B (2007) Enriched mantle source for Paleoproterozoic high Mg and low Ti–P mafic dykes in central part of the North China Craton: constraints from zircon Hf isotopic compositions. Acta Petrologica Sinica 23:277–284 (in Chinese with English abstract)

    Google Scholar 

  31. Hollings P, Kerrich R (2000) An Archean arc basalt–Nb-enriched basalt–adakite association: the 2.7 Ga Confederation assemblage of the Birch–Uchi greenstone belt, Superior Province. Contrib Miner Petrol 139:208–226

    Article  Google Scholar 

  32. Hu ZC, Liu YS, Gao S, Liu WG, Zhang W, Tong XR, Lin L, Zong KQ, Li M, Chen HH, Zhou L, Yang L (2012) Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J Anal At Spectrom 27:1391–1399

    Google Scholar 

  33. Hu JL, Zhao TP, Xu YH, Chen W (2007) Geochemistry and petrogenesis of the high-K volcanic rocks in the Dahongyu Formation, North China Craton. J Miner Petrol 27:70–77 (in Chinese with English abstract)

    Google Scholar 

  34. Jackson MG, Dasgupta R (2008) Compositions of HIMU, EM1 and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet Sci Lett 276:175–186

    Article  Google Scholar 

  35. Jayananda M (2013) Geochemical constraints on komatiite volcanism from Sargur Group Nagamangala greenstone belt, Western Dharwar craton, Southern India: implications for Mesoarchean mantle evolution and continental growth. Geosci Front 4:321–340

    Article  Google Scholar 

  36. Jenner FE, Bennett VC, Yaxley G (2013) Eoarchean within-plate basalts from southwest Greenland. Geology 41:327–330

    Article  Google Scholar 

  37. Kerrich R, Xie QL (2002) Compositional recycling structure of an Archean super-plume: Nb-Th-U-LREE systematics of Archean komatiites and basalts revised. Contrib Miner Petrol 142:476–484

    Article  Google Scholar 

  38. Kerrich R, Polat A, Wyman D, Hollings P (1999) Trace element systematics of Mg-, to Fe-tholeiitic basalt suites of the Superior Province: implications for Archean mantle reservoirs and greenstone belt genesis. Lithos 46:163–187

    Article  Google Scholar 

  39. Kerrich R, Wyman D, Fan J (1998) Boninite series: low Ti-tholeiite associations from the 2.7 Ga Abitibi greenstone belt. Earth Planet Sci Lett 164:303–316

    Article  Google Scholar 

  40. Kikuchi Y (1890) On pyroxenic compounds in certain volcanic rocks from Bonin Island. J Coll Sci Imp Univ Tokyo 3:67–89

    Google Scholar 

  41. Kröner A, Hoffmann JE, Xie HQ et al (2013) Generation of early Archean felsic greenstone volcanic rocks through crustal melting in the Kaapvaal craton, Southern Africa. Earth Planet Sci Lett 381:188–197

    Article  Google Scholar 

  42. Kusky TM, Li JH (2003) Paleoproterozoic tectonic evolution of the North China Craton. J Asian Earth Sci 22:383–397

    Article  Google Scholar 

  43. Li HK, Lu SN, Su WB, Xiang ZQ, Zhou HY, Zhang YQ (2013) Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton. J Asian Earth Sci 72:216–227

    Article  Google Scholar 

  44. Li QG, Liu SW, Wang ZQ et al (2011) Provenance and geotectonic setting of the Palaeoproterozoic Zhongtiao Group and implications for assembly of the North China Craton: whole-rock geochemistry and detrital zircon data. J Geol Soc 168:1215–1224

    Article  Google Scholar 

  45. Li QG, Liu SW, Wang ZQ et al (2008) Contrasting provenance of Late Archean metasedimentary rocks from the Wutai Complex, North China Craton: detrital zircon U–Pb, whole-rocks Sm–Nd isotopic, and geochemical data. Int J Earth Sci 97:443–458

    Article  Google Scholar 

  46. Liu SJ, Wan YS, Sun HY et al (2013) Paleo- to Eoarchean crustal evolution in eastern Hebei, North China Craton: New evidence from SHRIMP U–Pb dating and in situ Hf isotopic study of detrital zircons from paragneisses. J Asian Earth Sci 78:4–17

    Article  Google Scholar 

  47. Liu SW, Zhang J, Li QG, Zhang LF, Wang W, Yang PT (2012) Geochemistry and U–Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Lüliang Complex and constraints on the evolution of the Trans-North China Orogen, North China Craton. Precambr Res 222–223:173–190

    Article  Google Scholar 

  48. Liu F, Guo JH, Peng P, Qian Q (2012) Zircon U–Pb ages and geochemistry of the Huai’an TTG gneisses terrane: petrogenesis and implications for ∼2.5 Ga crustal growth in the North China Craton. Precambr Res 212–213:225–244

    Article  Google Scholar 

  49. Liu SW, Santosh M, Wang W, Bai X, Yang PT (2011) Zircon U–Pb chronology of the Jianping Complex: implications for the Precambrian crustal evolution history of the northern margin of North China Craton. Gondwana Res 20:48–63

    Article  Google Scholar 

  50. Liu DY, Wilde SA, Wan YS et al (2008) New U–Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton. Am J Sci 308:200–231

    Article  Google Scholar 

  51. Liu SW, Lü YJ, Feng YG, Zhang C, Tian W, Yan QR, Liu XM (2007) Geology and zircon U–Pb isotopic chronology of Dantazi Complex, Northern Hebei Province. Geol J China Univ 13:484–497 (in Chinese with English abstract)

    Google Scholar 

  52. Liu SW, Lü YJ, Feng YG, Liu XM, Yan QR, Zhang C, Tian W (2007) Zircon and monazite geochronology of the Hongqiyingzi complex, northern Hebei, China. Geol Bull China 26:1086–1100 (in Chinese with English abstract)

    Google Scholar 

  53. Liu SW, Zhao GC, Wilde SA, Shu GM, Sun M, Li QG, Tian W, Zhang J (2006) Th-U-Pb monazite geochronology of the Lüliang and Wutai Complexes: constraints on the tectonothermal evolution of the Trans-North China Orogen. Precambr Res 148:205–224

    Article  Google Scholar 

  54. Liu SW, Tian W, Lv YJ et al (2006) Geochemistry, Nd isotopic characteristics of metamorphic complexes in Northern Hebei: implications for crustal accretion. Acta Geol Sinica (English version) 80:807–818

    Google Scholar 

  55. Liu SW, Pan YM, Xie QL, Zhang J, Li QG (2005) Geochemistry of the Paleoproterozoic Nanying granitic gneisses in the Fuping complex: implications for the tectonic evolution of the Central zone, North China Craton. J Asian Earth Sci 24:643–658

    Article  Google Scholar 

  56. Liu SW, Pan YM, Xie QL, Zhang J, Li QG (2004) Archean geodynamics in the Central Zone, North China craton: constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutaishan complexes. Precambr Res 130:229–249

    Article  Google Scholar 

  57. Liu SW, Pan YM, Li JH, Zhang J, Li QG (2002) Geological and isotopic geochemical constraints on the evolution of the Fuping Complex, North China Craton. Precambr Res 117:41–56

    Article  Google Scholar 

  58. Liu DY, Nutman AP, Compston W, Wu JS, Shen QH (1992) Remmants of ≥3800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology 20:339–342

    Article  Google Scholar 

  59. Lu SN, Zhao GC, Wang HC, Hao GJ (2008) Precambrian metamorphic basement and sedimentary cover of the North China Craton: a review. Precambr Res 160:77–93

    Article  Google Scholar 

  60. Ludwig KR (2003) User’s Manual for Isoplot 3.00. A geochronological toolkit for Microsoft Excel. Special Publication No. 4a. Berkeley Geochronology Center, Berkeley, CA

    Google Scholar 

  61. Manikyamba C, Kerrich R (2011) Geochemistry of alkaline basalts and associated high-Mg basalts from the 2.7 Ga Penakacherla Terrane, Dharwar craton, India: an Archean depleted mantle-OIB array. Precambr Res 188:104–122

    Article  Google Scholar 

  62. Manikyamba C, Napvi SM, Subba Rao DV et al (2005) Boninites from the Neoarchaean Gadwal Greenstone belt, Eastern Dharwar Craton, India: implications for Archaean subduction processes. Earth Planet Sci Lett 230:65–83

    Article  Google Scholar 

  63. Mints MV, Belousova EA, Konilov AN et al (2010) Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia. Geology 38:739–742

    Article  Google Scholar 

  64. Moyen JF, Stevens G, Kiseters A (2006) Record of mid-Archaean subduction from metamorphism in the Barberton terrain, South Africa. Nature 442:559–562

    Article  Google Scholar 

  65. Nisbet EG, Cheadle M, Arndt N et al (1993) Constraining the potential temperature of the Archaean mantle: a review of the evidence from komatiites. Lithos 30:291–307

    Article  Google Scholar 

  66. Nutman AP, Wan YS, Du LL, Friend CRL, Dong CY, Xie HQ, Wang W, Sun HY, Liu DY (2011) Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei. Precambr Res 189:43–65

    Article  Google Scholar 

  67. O’Neil J, Francis D, Carlson RW (2011) Implications of the Nuvvuagittuq greenstone belt for the formation of Earth’s early crust. J Petrol 52:985–1009

    Article  Google Scholar 

  68. Parman SW, Grove TL, Dann JC (2001) The production of Barberton komatiites in an Archean subduction zone. Geophys Res Lett 28:2513–2516

    Article  Google Scholar 

  69. Pearce JA (2014) Geochemical fingerprinting of the earth’s oldest rocks. Geology 42:175–176

    Article  Google Scholar 

  70. Peng P, Guo JH, Windley BF et al (2012) Petrogenesis of Late Paleoproterozoic Liangcheng charnockites and S-type granites in the central-northern margin of the North China Craton: implications for ridge subduction. Precambr Res 222:107–123

    Article  Google Scholar 

  71. Peng P, Liu F, Zhai MG, Guo JH (2011) Age of the Miyun dyke swarm: constraints on the maximum depositional age of the Changcheng System. Chin Sci Bull 57:105–110 (in Chinese with English abstract)

    Article  Google Scholar 

  72. Peng P, Zhai MG, Ernst RE, Guo JH, Liu F, Hu B (2008) A 1.78 Ga large igneous province in the North China craton: the Xiong’er Volcanic Province and the North China dyke swarm. Lithos 101:260–280

    Article  Google Scholar 

  73. Peterson J (1891) Beitrge zur Petrographie von Sulphur Island, Peel Island, Hachijo und Mijakeshima. Jahrb Hamburg Wiss Anst 8:1–59

    Google Scholar 

  74. Piercey SJ, Murphy DC, Mortensen JK (2001) Boninitic magmatism in a continental margin setting. Yukon-Tanana terrane, southeastern Yukon. Can Geol 29:731–734

    Article  Google Scholar 

  75. Polat A (2013) Geochemical variations in Archean volcanic rocks, southwestern Greenland: traces of diverse tectonic settings in the early Earth. Geology 41:379–380

    Article  Google Scholar 

  76. Polat A, Appel PWU, Fryer BJ (2011) An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to mafic volcanic rocks, SW Greenland: Implications for mantle depletion and petrogenetic processes at subduction zones in the early Earth. Gondwana Res 20:255–283

    Article  Google Scholar 

  77. Polat A, Li J, Fryer B et al (2006) Geochemical characteristics of the Neoarchean (2800–2700 Ma) Taishan greenstone belt, North China Craton: evidence for plume-craton interaction. Chem Geol 230:60–87

    Article  Google Scholar 

  78. Polat A, Hofmann AW, Rosing MT (2002) Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem Geol 184:231–254

    Article  Google Scholar 

  79. Polat A, Kerrich R (2001) Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: implications for late Archean subduction zone petrogenetic processes. Contrib Miner Petrol 141:36–52

    Article  Google Scholar 

  80. Polat A, Kerrich R, Wyman DA (1999) Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: trace element and Nd isotope evidence for a heterogeneous mantle. Precambr Res 94:139–173

    Article  Google Scholar 

  81. Sajona FG, Maury RC, Bellon H et al (1996) High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, western Mindanao (Philippines). J Petrol 37:693–726

    Article  Google Scholar 

  82. Sajona FG, Maury RC, Bellon H et al (1993) Initiation of subduction and the generation of slab melts in western and eastern mindanao, Philippines. Geology 21:1007–1010

    Article  Google Scholar 

  83. Said N, Kerrich R (2009) Geochemistry of coexisting depleted and enriched Paringa Basalts, in the 2.7 Ga Kalgoorlie Terrane, Yilgarn Craton, Western Australia: evidence for a heterogeneous mantle plume event. Precambr Res 174:287–309

    Article  Google Scholar 

  84. Santosh M, Sajeev K, Li JH (2006) Extreme crustal metamorphism during Columbia supercontinent assembly: evidence from North China Craton. Gondwana Res 10:256–266

    Article  Google Scholar 

  85. Segal I, Halicz L, Platzner IT (2003) Accurate isotope ratio measurements of ytterbium by multiple collection inductively coupled plasma mass spectrometry applying erbium and hafnium in an improved double external normalization procedure. J Anal At Spectrom 18:1217–1223

    Article  Google Scholar 

  86. Shirey SB, Richardson SH (2011) Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333:434–436

    Article  Google Scholar 

  87. Smithies RH, Kranendonk MJ, Champion DC (2007) The Mesoarchean emergence of modern-style subduction. Gondwana Res 11:50–68

    Article  Google Scholar 

  88. Smithies RH, Champion DC, Sun SS (2004) The case for Archeaen boninites. Contrib Miner Petrol 147:705–721

    Article  Google Scholar 

  89. Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324

    Article  Google Scholar 

  90. Stern R (2008) Modern-style plate tectonics bagan in Neoproterozoic time: an alternative interpretation of Earth’s tectonic history. In: Condie KC, Pease V (eds), When did plate tectonics begin on planet earth? Geol Soc Am, Special paper 440:265–280

    Google Scholar 

  91. Stiegler MT, Lowe DR, Byerly GR (2010) The petrogenesis of volcaniclastic komatiites in the Barberton greenstone belt, South Africa: a textural and geochemical study. J Petrol 51:947–972

    Article  Google Scholar 

  92. Tappe S, Smart KA, Pearson DG et al (2011) Craton formation in Late Archean subduction zones revealed by first Greenland eclogites. Geology 39:1103–1106

    Article  Google Scholar 

  93. Turner S, Rushmer T, Reagan M, Moyen JF (2014) Heading down early on? Start of subduction on Earth. Geology 42:139–142

    Article  Google Scholar 

  94. Van Achterbergh E, Ryan CG, Jackson SE, Griffin WL (2001) Data reduction software for LA-ICPMS. Laser-ablation-ICPMS in the Earth Sciences: Principles and applications. Mineralogical Association of Canadian (Short Course Series) 29:239–243

    Google Scholar 

  95. Viljoen MJ, Viljoen RP (1969) The geology and geochemistry of the lower ultramafic unit of the Onverwacht Group and a proposed new class of igneous rocks. Spec Publ Geol SOC S Afr 2:55–85

    Google Scholar 

  96. Wan YS, Xie SW, Yang CH, Kröner A, Ma MZ, Dong CY, Du LL, Xie HQ, Liu DY (2014) Early Neoarchean (~2.7 Ga) tectono-thermal events in the North China Craton: a synthesis. Precambrian Res. 247:45–63

    Article  Google Scholar 

  97. Wan YS, Zhang YH, Williams IS, Liu DY, Dong CY, Fan RL, Shi YR, Ma MZ (2013) Extreme zircon O isotopic compositions from 3.8 to 2.5 Ga magmatic rocks from the Anshan area, North China Craton. Chem Geol 352:108–124

    Article  Google Scholar 

  98. Wan YS, Liu DY, Wang SJ, Yang EX, Wang W, Dong CY, Zhou HY, Du LL, Yang YH, Diwu CR (2011) ~2.7 Ga juvenile crust formation in the North China Craton (Taishan-Xintai area, western Shandong Province): further evidence of an understated event from U–Pb dating and Hf isotopic composition of zircon. Precambr Res 186:169–180

    Article  Google Scholar 

  99. Wan YS, Liu DY, Wang SJ et al (2010) Juvenile magmatism and crustal recycling at the end of the Neoarchean in Western Shandong Province, North China Craton: evidence from SHRIMP zircon dating. Am J Sci 310:1503–1552

    Article  Google Scholar 

  100. Wan YS, Liu DY, Dong CY, Nutman AP, Wilde SA, Wang W, Xie HQ, Yin XY, Zhou HY (2009) The oldest rocks and zircons in China. Acta Petrologica Sinica 25:1793–1807 (in Chinese with English abstract)

    Google Scholar 

  101. Wan YS, Zhang Q, Song T (2003) SHRIMP ages of detrital zircons from the Changcheng System in the Ming Tombs area, Beijing: constraints on the protolith nature and maximum depositional age of the Mesoproterozoic cover of the North China Craton. Chin Sci Bull 48:2500–2506

    Google Scholar 

  102. Wang W, Liu SW, Santosh M, Wang GH, Bai X, Guo RR (2015) Neoarchean intra-oceanic arc system in the Western Liaoning Province: Implications for Early Precambrian crustal evolution in the Eastern Block of the North China Craton. Earth Sci Rev 150:329–364

    Article  Google Scholar 

  103. Wang W, Liu SW, Santosh M et al (2015) Late Paleoproterozoic geodynamics of the north China Craton: geochemical and zircon U-Pb–Hf records from a volcanic suite in the Yanliao rift. Gondwana Res 27:300–325

    Article  Google Scholar 

  104. Wang W, Liu SW, Santosh M, Zhang LF, Bai X, Zhao Y, Zhang SH, Guo RR (2015) 1.23 Ga mafic dykes in the North China Craton reconstruct the Columbia supercontinent. Gondwana Res 27:1407–1418

    Article  Google Scholar 

  105. Wang W, Liu SW, Bai X et al (2013) Zircon U–Pb–Hf isotopes and whole-rock geochemistry of granitoid gneisses in the Jianping gneissic terrane, Western Liaoning Province: constraints on the Neoarchean crustal evolution of the North China Craton. Precambr Res 224:184–221

    Article  Google Scholar 

  106. Wang W, Liu SW, Bai X, Li QG, Yang PT, Zhao Y, Zhang SH, Guo RR (2013) Geochemistry and zircon U–Pb–Hf isotopes of the late Paleoproterozoic Jianping diorite-monzonite-syenite suites of the North China Craton: implications for petrogenesis and geodynamic setting. Lithos 162–163:175–194

    Article  Google Scholar 

  107. Wang W, Liu SW, Wilde SA, Li QG, Zhang J (2012) Petrogenesis and geochronology of Precambrian granitoid gneisses in Western Liaoning Province: constraints on Neoarchean to early Paleoproterozoic crustal evolution of the North China Craton. Precambr Res 222–223:290–311

    Article  Google Scholar 

  108. Wang W, Liu SW, Bai X, Yang PT, Li QG, Zhang LF (2011) Geochemistry and zircon U–Pb–Hf isotopic systematics of the Neoarchean Yixian-Fuxin greenstone belt, northern margin of the North China Craton: implications for petrogenesis and tectonic setting. Gondwana Res 20:64–81

    Article  Google Scholar 

  109. Wang XL, Jiang SY, Dai BZ (2010) Melting of enriched Archean subcontinental lithospheric mantle: evidence from the ca. 1760 Ma volcanic rocks of the Xiong’er Group, southern margin of the North China Craton. Precambr Res 182:204–216

    Article  Google Scholar 

  110. Wang YJ, Zhang YZ, Zhao GC, Fan WM, Xia XP, Zhang FF, Zhang AM (2009) Zircon U–Pb geochronological and geochemical constaints on the petrogenesis of the Taishan sanukitoids (Shandong): implications for Neoarchean subduction in the Eastern Block, North China Craton. Precambr Res 174:273–286

    Article  Google Scholar 

  111. Wilde SA, Vallly JW, Kita NT et al (2008) SHRIMP U–Pb and CAMECA 1280 oxygen isotope results from ancient detrital zircons in the Caozhuang quartzite, Eastern Hebei, North China Craton: evidence for crustal reworking 3.8 Ga ago. Am J Sci 308:185–199

    Article  Google Scholar 

  112. Wilde SA, Zhao GC, Sun M (2002) Development of the North China Craton during the late Archaean and its final amalgamation at 1.8 Ga; some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Res 5:85–94

    Article  Google Scholar 

  113. Williams IS (1998) U–Th–Pb geochronology by ion microprobe. In: Mckibben MA, Shanks III WC, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Rev Ecol Geol. vol 7, pp 1–35

    Google Scholar 

  114. Wu ML, Zhao GC, Sun M, Li SZ, Bao ZA, Tam PY, Eizenhöefer PR, He YH (2014) Zircon U–Pb geochronology and Hf isotopes of major lithologies from the Jiaodong Terrane: implications for the crustal evolution of the Eastern Block of the North China Craton. Lithos 190–191:71–84

    Article  Google Scholar 

  115. Wu FY, Yang YH, Xie LW, Yang JH, Xu P (2006) Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem Geol 234:105–126

    Article  Google Scholar 

  116. Wu FY, Zhao GC, Wilde SA, Sun DY (2005) Nd isotopic constraints on crustal formation in the North China Craton. J Asian Earth Sci 24:523–545

    Google Scholar 

  117. Wu JS, Geng YS, Shen QH, Wan YS, Liu DY, Song B (1998) Archean geology characteristics and tectonic evolution of China-Korea Paleo-continent. Geological Publishing House, Beijing, pp 1–212 (in Chinese)

    Google Scholar 

  118. Wyman D, Kerrich R (2009) Plume and arc magmatism in the Abitibi subprovince: implications for the origin of Archean continental lithospheric mantle. Precambr Res 168:4–22

    Article  Google Scholar 

  119. Wyman D, Ayer JA, Devaney JR (2000) Niobium-enriched basalts from the Wabigoon subprovince, Canada: evidence for adakitic metasomatism above an Archean subduction zone. Earth Planet Sci Letters 179:21–30

    Article  Google Scholar 

  120. Xie GH (2005) Petrology and geochemistry of the Damiao Anorthosite and the Miyun Rapakivi Granite. Science Press, Beijing, pp 1–195 (in Chinese)

    Google Scholar 

  121. Yuan HL, Gao S, Liu XM, Li HM, Günther D, Wu FY (2004) Accurate U–Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma-mass spectrometry. Geostand Geoanal Res 28:353–370

    Article  Google Scholar 

  122. Zhang SH, Zhao Y, Santosh M (2012) Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Res 222–223:339–367

    Google Scholar 

  123. Zhang SH, Zhao Y, Yang ZY, He ZF, Wu H (2009) The 1.35 Ga diabase sills from the northern North China Craton: implications for breakup of the Columbia (Nuna) supercontinent. Earth Planet Sci Lett 288:588–600

    Article  Google Scholar 

  124. Zhang SH, Liu SW, Zhao Y, Yang JH, Song B, Liu XM (2007) The 1.75–1.68 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: magmatism related to a Paleoproterozoic orogen. Precambr Res 155:287–312

    Article  Google Scholar 

  125. Zhang HF, Sun M, Lu FX, Zhou XH, Zhou MF, Liu YS, Zhang GH (2001) Moderately depleted lithospheric mantle underneath the Yangtze Block: evidence from a garnet lherzolite xenolith in the Dahongshan kimberlite. Geochem J 35:315–331

    Article  Google Scholar 

  126. Zhai MG, Santosh M (2011) The Early Precambrian odyssey of the North China Craton: a synoptic overview. Gondwana Res 20:6–25

    Article  Google Scholar 

  127. Zhai MG, Santosh M (2013) Metallogeny of the North China Craton: link with secular changes in the evolving Earth. Gondwana Res 24:275–297

    Article  Google Scholar 

  128. Zhai MG, Bian AG, Zhao TP (2000) The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during late Palaeoproterozoic and Mesoproterozoic. Sci China (Ser. D) 43:219–232

    Google Scholar 

  129. Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH, Yin CQ (2012) Amalgamation of the North China Craton: key issues and discussions. Precambr Res 222–223:55–76

    Article  Google Scholar 

  130. Zhao GC, Wilde SA, Guo JH, Cawood PA, Sun M, Li XP (2010) Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambr Res 177:266–276

    Article  Google Scholar 

  131. Zhao GC, He YH, Sun M (2009) The Xiong’er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Res 16:170–181

    Article  Google Scholar 

  132. Zhao TP, Chen W, Zhou MF (2009) Geochemical and Nd–Hf isotopic constraints on the origin of the ~1.74 Ga Damiao anorthosite complex. North China Craton Lithos 113:673–690

    Google Scholar 

  133. Zhao GC, Sun M, Wilde SA et al (2005) Late Archean to proterozoic evolution of the North China Craton: key issues revisited. Precambr Res 136:177–202

    Article  Google Scholar 

  134. Zhao GC, Sun M, Wilde SA, Li SZ (2004) A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth Sci Rev 67:91–123

    Article  Google Scholar 

  135. Zhao GC, Cawood PA, Wilde SA, Sun M (2002) Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci Rev 59:125–162

    Article  Google Scholar 

  136. Zhao GC, Wilde SA, Cawood PA et al (1999) Thermal evolution of two types of mafic granulites from the North China Craton: implications for both mantle plume and collisional tectonics. Geol Mag 136:223–240

    Article  Google Scholar 

  137. Zheng JP, Griffin WL, O’Reilly SY (2004) 3.6 Ga lower crust in central China: new evidence on the assembly of the North China craton. Geology 32:229–232

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, W. (2018). Introduction. In: Archean-Mesoproterozoic Crustal Evolution and Crust-Mantle Geodynamics of Western Liaoning-Northeastern Hebei Provinces, North China Craton. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-7922-1_1

Download citation

Publish with us

Policies and ethics