Skip to main content

Regulation of Metabolic Pathways in Steroidogenic Cells by Ad4BP/SF-1

  • Chapter
  • First Online:
Cell Biology of the Ovary
  • 635 Accesses

Abstract

Ad4BP/SF-1 (NR5A1), a member of the nuclear receptor superfamily, is known to play crucial roles in the regulation of steroidogenesis in the gonads and adrenal cortex, and many studies have demonstrated that all steroidogenic genes are direct targets of Ad4BP/SF-1. In addition, in vivo KO studies demonstrated that no steroidogenic organs formed in gene-disrupted mice, strongly suggesting that Ad4BP/SF-1 is essential for the development of the gonads and adrenal gland. However, it remains unclear how Ad4BP/SF-1 regulates the development of the steroidogenic organs and which additional non-steroidogenic genes are targeted.

We surveyed the target genes of Ad4BP/SF-1 in steroidogenic cells by mRNA deep sequencing and ChIP-sequence analyses using an Ad4BP/SF-1 antibody. Nearly all genes in energy-producing glycolytic pathways were found to be regulated by Ad4BP/SF-1. We also showed that the key genes implicated in NADPH production are the direct targets. Since sufficient supplies of ATP and NADPH are necessary for cellular survival and production of steroids, Ad4BP/SF-1 possibly orchestrates tissue-specific steroidogenic pathway and these housekeeping metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hammer GD, Parker KL, Schimmer BP. Minireview: transcriptional regulation of adrenocortical development. Endocrinology. 2005;146:1018–24.

    Article  CAS  Google Scholar 

  2. Hatano O, Takayama K, Imai T, Waterman MR, Takakusu A, Omura T, Morohashi K. Sex-dependent expression of a transcription factor, Ad4BP, regulating steroidogenic P-450 genes in the gonads during prenatal and postnatal rat development. Development. 1994;120:2787–97.

    CAS  PubMed  Google Scholar 

  3. Hoivik EA, Lewis AE, Aumo L, Bakke M. Molecular aspects of steroidogenic factor 1 (SF-1). Mol Cell Endocrinol. 2010;315:27–39.

    Article  CAS  Google Scholar 

  4. Morohashi K, Honda S, Inomata Y, Handa H, Omura T. A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. J Biol Chem. 1992;267:17913–9.

    CAS  PubMed  Google Scholar 

  5. Val P, Lefrancois-Martinez AM, Veyssiere G, Martinez A. SF-1 a key player in the development and differentiation of steroidogenic tissues. Nucl Recept. 2003;1:8.

    Article  Google Scholar 

  6. Morohashi K, Zanger UM, Honda S, Hara M, Waterman MR, Omura T. Activation of CYP11A and CYP11B gene promoters by the steroidogenic cell-specific transcription factor, Ad4BP. Mol Endocrinol. 1993;7:1196–204.

    CAS  PubMed  Google Scholar 

  7. Clemens JW, Lala DS, Parker KL, Richards JS. Steroidogenic factor-1 binding and transcriptional activity of the cholesterol side-chain cleavage promoter in rat granulosa cells. Endocrinology. 1994;134:1499–508.

    Article  CAS  Google Scholar 

  8. Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell. 1994;77:481–90.

    Article  CAS  Google Scholar 

  9. Morohashi KI, Omura T. Ad4BP/SF-1, a transcription factor essential for the transcription of steroidogenic cytochrome P450 genes and for the establishment of the reproductive function. FASEB J. 1996;10:1569–77.

    Article  CAS  Google Scholar 

  10. Sadovsky Y, Crawford PA, Woodson KG, Polish JA, Clements MA, Tourtellotte LM, Simburger K, Milbrandt J. Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc Natl Acad Sci U S A. 1995;92:10939–43.

    Article  CAS  Google Scholar 

  11. Shinoda K, Lei H, Yoshii H, Nomura M, Nagano M, Shiba H, Sasaki H, Osawa Y, Ninomiya Y, Niwa O, et al. Developmental defects of the ventromedial hypothalamic nucleus and pituitary gonadotroph in the Ftz-F1 disrupted mice. Dev Dyn. 1995;204:22–9.

    Article  CAS  Google Scholar 

  12. Almeida MQ, Soares IC, Ribeiro TC, Fragoso MC, Marins LV, Wakamatsu A, Ressio RA, Nishi MY, Jorge AA, Lerario AM, Alves VA, Mendonca BB, Latronico AC. Steroidogenic factor 1 overexpression and gene amplification are more frequent in adrenocortical tumors from children than from adults. J Clin Endocrinol Metab. 2010;95:1458–62.

    Article  CAS  Google Scholar 

  13. Doghman M, Karpova T, Rodrigues GA, Arhatte M, De Moura J, Cavalli LR, Virolle V, Barbry P, Zambetti GP, Figueiredo BC, Heckert LL, Lalli E. Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer. Mol Endocrinol. 2007;21:2968–87.

    Article  CAS  Google Scholar 

  14. Sbiera S, Schmull S, Assie G, Voelker HU, Kraus L, Beyer M, Ragazzon B, Beuschlein F, Willenberg HS, Hahner S, Saeger W, Bertherat J, Allolio B, Fassnacht M. High diagnostic and prognostic value of steroidogenic factor-1 expression in adrenal tumors. J Clin Endocrinol Metab. 2010;95:E161–71.

    Article  CAS  Google Scholar 

  15. Zubair M, Oka S, Parker KL, Morohashi K. Transgenic expression of Ad4BP/SF-1 in fetal adrenal progenitor cells leads to ectopic adrenal formation. Mol Endocrinol. 2009;23:1657–67.

    Article  CAS  Google Scholar 

  16. Rabinowitz JD, Kimball E. Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal Chem. 2007;79:6167–73.

    Article  CAS  Google Scholar 

  17. Nathan C, Ding A. SnapShot: reactive oxygen intermediates (ROI). Cell. 2010;140:e952.

    Google Scholar 

  18. Pollak N, Dolle C, Ziegler M. The power to reduce: pyridine nucleotides—small molecules with a multitude of functions. Biochem J. 2007;402:205–18.

    Article  CAS  Google Scholar 

  19. Morohashi K, Baba T, Tanaka M. Steroid hormones and the development of reproductive organs. Sex Dev. 2013;7:61–79.

    Article  CAS  Google Scholar 

  20. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007;104:19345–50.

    Article  CAS  Google Scholar 

  21. Labuschagne CF, JF N, vd B, Mackay GM, Vousden KH, Maddocks OD. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 2014;7:1248–58.

    Article  CAS  Google Scholar 

  22. Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR, Vokes NI, Feist AM, Vander Heiden MG, Metallo CM. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell. 2014;55:253–63.

    Article  CAS  Google Scholar 

  23. Morohashi K. Gonadal and extragonadal functions of Ad4BP/SF-1: developmental aspects. Trends Endocrinol Metab. 1999;10:169–73.

    Article  CAS  Google Scholar 

  24. Parker KL, Rice DA, Lala DS, Ikeda Y, Luo X, Wong M, Bakke M, Zhao L, Frigeri C, Hanley NA, Stallings N, Schimmer BP. Steroidogenic factor 1: an essential mediator of endocrine development. Recent Prog Horm Res. 2002;57:19–36.

    Article  CAS  Google Scholar 

  25. Takayama K, Morohashi K, Honda S, Hara N, Omura T. Contribution of Ad4BP, a steroidogenic cell-specific transcription factor, to regulation of the human CYP11A and bovine CYP11B genes through their distal promoters. J Biochem. 1994;116:193–203.

    Article  CAS  Google Scholar 

  26. Baba T, Otake H, Sato T, Miyabayashi K, Shishido Y, Wang CY, Shima Y, Kimura H, Yagi M, Ishihara Y, Hino S, Ogawa H, Nakao M, Yamazaki T, Kang D, Ohkawa Y, Suyama M, Chung BC, Morohashi K. Glycolytic genes are targets of the nuclear receptor Ad4BP/SF-1. Nat Commun. 2014;5:3634.

    Article  CAS  Google Scholar 

  27. Inoue M, Shima Y, Miyabayashi K, Tokunaga K, Sato T, Baba T, Ohkawa Y, Akiyama H, Suyama M, Morohashi K. Isolation and characterization of fetal Leydig progenitor cells of male mice. Endocrinology. 2016;157:1222–33.

    Article  CAS  Google Scholar 

  28. Shima Y, Miyabayashi K, Haraguchi S, Arakawa T, Otake H, Baba T, Matsuzaki S, Shishido Y, Akiyama H, Tachibana T, Tsutsui K, Morohashi K. Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes. Mol Endocrinol. 2013;27:63–73.

    Article  CAS  Google Scholar 

  29. Shima Y, Matsuzaki S, Miyabayashi K, Otake H, Baba T, Kato S, Huhtaniemi I, Morohashi K. Fetal Leydig cells persist as an androgen-independent subpopulation in the postnatal testis. Mol Endocrinol. 2015;29:1581–93.

    Article  CAS  Google Scholar 

  30. Li B, Baba T, Miyabayashi K, Sato T, Shima Y, Ichinose T, Miura D, Ohkawa Y, Suyama M, Morohashi KI. Role of Ad4-binding protein/steroidogenic factor 1 in regulating NADPH production in adrenocortical Y-1 cells. Endocr J. 2017;64:315–24.

    Article  Google Scholar 

  31. Freeman DA, Ascoli M. Studies on the source of cholesterol used for steroid biosynthesis in cultured Leydig tumor cells. J Biol Chem. 1982;257:14231–8.

    CAS  PubMed  Google Scholar 

  32. Miller WL. Molecular biology of steroid hormone synthesis. Endocr Rev. 1988;9:295–318.

    Article  CAS  Google Scholar 

  33. Fayard E, Auwerx J, Schoonjans K. LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol. 2004;14:250–60.

    Article  CAS  Google Scholar 

  34. Wilson TE, Fahrner TJ, Johnston M, Milbrandt J. Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science. 1991;252:1296–300.

    Article  CAS  Google Scholar 

  35. Charest-Marcotte A, Dufour CR, Wilson BJ, Tremblay AM, Eichner LJ, Arlow DH, Mootha VK, Giguere V. The homeobox protein Prox1 is a negative modulator of ERR{alpha}/PGC-1{alpha} bioenergetic functions. Genes Dev. 2010;24:537–42.

    Article  CAS  Google Scholar 

  36. Chaveroux C, Eichner LJ, Dufour CR, Shatnawi A, Khoutorsky A, Bourque G, Sonenberg N, Giguere V. Molecular and genetic crosstalks between mTOR and ERRalpha are key determinants of rapamycin-induced nonalcoholic fatty liver. Cell Metab. 2013;17:586–98.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichirou Morohashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morohashi, Ki., Inoue, M., Li, B., Baba, T. (2018). Regulation of Metabolic Pathways in Steroidogenic Cells by Ad4BP/SF-1. In: Katabuchi, H., Ohba, T., Motohara, T. (eds) Cell Biology of the Ovary. Springer, Singapore. https://doi.org/10.1007/978-981-10-7941-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7941-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7940-5

  • Online ISBN: 978-981-10-7941-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics