Skip to main content

Removal and Recovery of Nitrogen Pollutants in Bioelectrochemical System

  • Chapter
  • First Online:
Bioelectrochemistry Stimulated Environmental Remediation

Abstract

Nitrogen should be strictly limited in wastewater to control the eutrophication of water bodies. Nitrate and nitrite need to be efficiently removed from groundwater and surface water due to their toxicity to human and animal health. Bioelectrochemical system (BES) is a promising technology for sustainable wastewater treatment, which aims not only water reuse but also nutrient recovery and management. For nitrogen removal and recovery, BESs exhibit great potential with the advantage of oxidizing organics at the anode integrating denitrification at the cathode as well as recovering energy simultaneously. This review summarized the most recent development in versatile nitrogen removal using BESs, including denitrification via biocathode, coupling with nitrification via bioanode, and photosynthetic process. The denitrification principles driven by electro-active bacteria are addressed from the view of microbiology, following the detailed descriptions focusing on the key elements related to nitrogen transformation in BESs, including environmental factors, methodologies for electrode modification, reactor configurations, and operational parameters. In addition, ammonium recovery could be realized in the BES coupling with physicochemical processes such as struvite precipitation and blowing-stripping. This review aims to summarize the current development in this field and to provoke more thoughts on further development of efficient BES-based processes for nitrogen pollutant removal and recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD-MFC:

Anode denitrification microbial fuel cell

AEM:

Anion-exchange membrane

AMO:

Ammonia monooxygenase

AOB:

Ammonia-oxidizing bacteria

AO-MFC:

Ammonia oxidation microbial fuel cell

BES:

Bioelectrochemical system

CEM:

Cation-exchange membrane

COD:

Chemical oxygen demand

CW:

Constructed wetland

CW-MFC:

Constructed wetland microbial fuel cell

DET:

Direct electron transfer

DO:

Dissolved oxygen

HAO:

Hydroxylamine oxidoreductase

IET:

Indirect electron transfer

MEC:

Microbial electrolysis cell

MFC:

Microbial fuel cell

NOB:

Nitrite-oxidizing bacteria

PA-MFC:

Photosynthetic algae microbial fuel cell

PBR:

Photobioreactor

PMFC:

Photomicrobial fuel cell

SMDDC:

Submerged microbial desalination-denitrification cell

SMFC:

Sediment microbial fuel cell

SND:

Simultaneous nitrification and denitrification

UBER:

Upflow bioelectrochemical reactor

References

  1. Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849

    Article  CAS  Google Scholar 

  2. Howarth RW (2003) Nutrient limitation of net primary production in marine ecosystems. Annu Rev Ecol Evol S 19:89–110

    Article  Google Scholar 

  3. Vitousek PM, Aber J, Bayley SE et al (1997) Human alteration of the global nitrogen cycle: causes and consequences. Ecol Appl 7:737–750

    Google Scholar 

  4. Cleveland CC, Townsend AR, Schimel DS et al (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural systems. Glob Biogeochem Cycl 13:623–645

    Article  CAS  Google Scholar 

  5. Karl D, Michaels Q, Bergman B et al (2002) Dinitrogen fixation in the world’s oceans. Biogeochemistry 57(58):47–98

    Article  Google Scholar 

  6. Howarth RW (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8:14–20

    Article  CAS  Google Scholar 

  7. National Bureau of Statistics, Ministry of Environmental Protection (2014) China statistical yearbook on environment. China Statistics Press, China

    Google Scholar 

  8. Rousta MJ, Lotfi E, Shamsalam N et al (2010) Nitrate situation in some vegetables and the necessity of crop production via organic farming. Paper presented at 19th world congress of soil science, soil solutions for a changing world, Brisbane, Australia, 1–6

    Google Scholar 

  9. Vitousek PM, Aber JD, Howarth RW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  10. Gupta SK, Gupta RC, Seth AK et al (2000) Methaemoglobinaemia in areas with high nitrate concentration in drinking water. Natl Med J India 13:58–61

    CAS  Google Scholar 

  11. Lijinsky W, Conrad E, Bogart RVD (1972) Carcinogenic nitrosamines formed by drug-nitrite interactions. Nature 15:165–167

    Article  Google Scholar 

  12. Ge S, Wang S, Yang X et al (2015) Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: a review. Chemosphere 140:85–98

    Article  CAS  Google Scholar 

  13. Ghafari S, Hasan M, Aroua MK (2008) Bio-electrochemical removal of nitrate from water and wastewater—a review. Bioresour Technol 99:3965–3974

    Article  CAS  Google Scholar 

  14. Karanasios KA, Vasiliadou IA, Pavlou S et al (2010) Hydrogenotrophic denitrification of potable water: a review. J Hazard Mater 180:20–37

    Article  CAS  Google Scholar 

  15. Kim J, Benjamin MM (2004) Modeling a novel ion exchange process for arsenic and nitrate removal. Water Res 38:2053–2062

    Article  CAS  Google Scholar 

  16. Schoeman JJ, Steyn A (2003) Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination 155:15–26

    Article  CAS  Google Scholar 

  17. Gain E, Laborie S, Viers P (2002) Ammonium nitrate wastewater treatment by coupled membrane electrolysis and electrodialysis. J Appl Electrochem 32:969–975

    Article  CAS  Google Scholar 

  18. Aslan S (2005) Combined removal of pesticides and nitrates in drinking waters using biodenitrification and sand filter system. Process Biochem 40:417–424

    Article  CAS  Google Scholar 

  19. Wasik E, Bohdziewicz J, Blaszczyk M (2001) Removal of nitrates from ground water by a hybrid process of biological denitrification and microfiltration. Process Biochem 37:57–64

    Article  CAS  Google Scholar 

  20. Aslan S, Turkman A (2005) Combined biological removal of nitrate and pesticides using wheat straw as substrates. Process Biochem 40:935–943

    Article  CAS  Google Scholar 

  21. Ernstsen V (1996) Reduction of nitrate by Fe2+ in clay minerals. Free Radic Res 44:599–608

    CAS  Google Scholar 

  22. Mellor RB, Ronnerrberg J, Campbell WH et al (1992) Reduction of nitrate and nitrite in water by immobilized enzymes. Nature 355:717–719

    Article  CAS  Google Scholar 

  23. Park HI, Kim DK, Choi YJ et al (2005) Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor. Process Biochem 40:3383–3388

    Article  CAS  Google Scholar 

  24. Rosenbaum M, Aulenta F, Villano M et al (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 102:324–333

    Article  CAS  Google Scholar 

  25. Peter C, Korneel R, Peter A et al (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360

    Article  CAS  Google Scholar 

  26. Lovley DR (2012) Electromicrobiology. Annu Rev Microbiol 66:391–409

    Article  CAS  Google Scholar 

  27. Butler CS, Nerenberg R (2010) Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies. Appl Microbiol Biotechnol 86:1399–1408

    Article  CAS  Google Scholar 

  28. Freguia S, Teh EH, Boon N et al (2010) Microbial fuel cells operating on mixed fatty acids. Bioresour Technol 101:1233–1238

    Article  CAS  Google Scholar 

  29. Yarzabal A, Appia-Ayme C, Ratouchniak J et al (2004) Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150:2113–2123

    Article  CAS  Google Scholar 

  30. Freguia S, Tsujimura S, Kano K (2010) Electron transfer pathways in microbial oxygen biocathodes. Electrochim Acta 55:813–818

    Article  CAS  Google Scholar 

  31. Lefebvre O, Al-Mamun A, Ng HY (2008) A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Sci Technol 58:881–885

    Article  CAS  Google Scholar 

  32. Aulenta F, Reale P, Canosa A (2010) Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene. Biosens Bioelectron 25:1796–1802

    Article  CAS  Google Scholar 

  33. Aulenta F, Catervi A, Majone M (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41:2554–2559

    Article  CAS  Google Scholar 

  34. Steinbusch KJ, Hamelers HV, Schaap JD (2010) Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol 44:513–517

    Article  CAS  Google Scholar 

  35. Hatch JL, Finneran KT (2008) Influence of reduced electron shuttling compounds on biological H2 production in the fermentative pure culture Clostridium beijerinckii. Curr Microbiol 56:268–273

    Article  CAS  Google Scholar 

  36. Park DH, Zeikus JG (1999) Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181:2403–2410

    CAS  Google Scholar 

  37. Wei TM, Mohamed KTA, Mohammed HC (2013) A review on the effect of bio-electrodes on denitrification and organic matter removal processes in bio-electrochemical systems. J Ind Eng Chem 19:1–13

    Article  CAS  Google Scholar 

  38. Tatsumi H, Takagi K, Fujita M (1999) Electrochemical study of reversible hydrogenase reaction of Desulfovibrio vulgaris cells with methyl viologen as an electron carrier. Anal Chem 71:1753–1759

    Article  CAS  Google Scholar 

  39. Lojou E, Durand MC, Dolla A (2002) Hydrogenase activity control at Desulfovibrio vulgaris cell-coated carbon electrodes: biochemical and chemical factors influencing the mediated bioelectrocatalysis. Electroanalysis 14:913–922

    Article  CAS  Google Scholar 

  40. Sanath K, Booki M (2013) Nitrate reduction with biotic and abiotic cathodes at various cell voltages in bioelectrochemical denitrification system. Bioprocess Biosyst Eng 36:231–238

    Article  CAS  Google Scholar 

  41. Pous N, Puig S, Balaguer MD et al (2015) Cathode potential and anode electron donor evaluation for a suitable treatment of nitrate-contaminated groundwater in bioelectrochemical systems. Chem Eng J 263:151–159

    Article  CAS  Google Scholar 

  42. Puig S, Coma M, Desloover J et al (2012) Autotrophic denitrification in microbial fuel cells treating low ionic strength waters. Environ Sci Technol 46:2309–2315

    Article  CAS  Google Scholar 

  43. Chang CN, Cheng HB, Chao AC (2004) Applying the Nernst equation to simulate redox potential variations for biological nitrification and denitrification processes. Environ Sci Technol 38:1807–1812

    Article  CAS  Google Scholar 

  44. Feleke Z, Araki K, Sakakibara et al (1998) Selective reduction of nitrate to nitrogen gas in a biofilm-electrode reactor. Water Res 32:2728–−2734

    Article  CAS  Google Scholar 

  45. Prosnansky M, Sakakibara Y, Kuroda M (2002) High-rate denitrification and SS rejection by biofilm-electrode reactor (BER) combined with microfiltration. Water Res 36:4801–4810

    Article  CAS  Google Scholar 

  46. Szekeres S, Kiss I, Bejerano TT et al (2001) Hydrogen-dependent denitrification in a two-reactor bio-electrochemical system. Water Res 35:715–719

    Article  CAS  Google Scholar 

  47. Li Y, Williams I, Xu ZH et al (2016) Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs). Appl Energy 163:352–360

    Article  CAS  Google Scholar 

  48. Zhang BG, Liu Y, Tong S et al (2014) Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells. J Power Source 268:423–429

    Article  CAS  Google Scholar 

  49. Liang YX, Feng HJ, Shen DS et al (2016) Metal-based anode for high performance bioelectrochemical systems through photo-electrochemical interaction. J Power Source 324:26–32

    Article  CAS  Google Scholar 

  50. Cast KL, Flora JRV (1998) An evaluation of two cathode materials and the impact of copper on bioelectrochemical denitrification. Water Res 32:63–70

    Article  CAS  Google Scholar 

  51. Sakakibara Y, Nakayama T (2001) A novel multi-electrode system for electrolytic and biological water treatments: electric charge transfer and application to denitrification. Water Res 35:768–778

    Article  CAS  Google Scholar 

  52. Sim J, Seo H, Kim J (2012) Electrochemical denitrification of metal-finishing wastewater: influence of operational parameters. Korean J Chem Eng 29:483–488

    Article  CAS  Google Scholar 

  53. Ghazouani M, Akrout H, Bousselmi L (2014) Efficiency of electrochemical denitrification using electrolysis cell containing BDD electrode. Desalin Water Treat 53:1107–1117

    Google Scholar 

  54. Kesseru P, Kiss I, Bihari Z et al (2003) Biological denitrification in a continuous-flow pilot bioreactor containing immobilized Pseudomonas butanovora cells. Bioresour Technol 87:75–80

    Article  CAS  Google Scholar 

  55. Wan D, Liu H, Qu J et al (2009) Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification. Bioresour Technol 100:142–148

    Article  CAS  Google Scholar 

  56. Wang H, Qu J (2003) Combined bioelectrochemical and sulfur autotrophic denitrification for drinking water treatment. Water Res 37:3767–3775

    Article  CAS  Google Scholar 

  57. Feleke Z, Sakakibara Y (2002) A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide. Water Res 36:3092–3102

    Article  CAS  Google Scholar 

  58. Zhang L, Jia J, Zhu Y et al (2005) Electro-chemically improved bio-degradation of municipal sewage. Biochem Eng J 22:239–244

    Article  CAS  Google Scholar 

  59. Zuo KC, Liiu H, Zhang QY et al (2016) Enhanced performance of nitrogen-doped carbon nanotube membrane-based filtration cathode microbial fuel cell. Electrochim Acta 211:199–206

    Article  CAS  Google Scholar 

  60. Xiao ZX, Awata T, Zhang DD et al (2016) Enhanced denitrification of Pseudomonas stutzeri by a bioelectrochemical system assisted with solid-phase humin. J Biosci Bioeng 122:85–91

    Article  CAS  Google Scholar 

  61. Liang YX, Feng HJ, Shen DD et al (2017) Enhancement of anodic biofilm formation and current output in microbial fuel cells by composite modification of stainless steel electrodes. J Power Source 342:98–104

    Article  CAS  Google Scholar 

  62. Xie X, Criddle C, Cui Y (2015) Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. Energy Environ Sci 8:3418–3441

    Article  CAS  Google Scholar 

  63. Zhang T, Nie HR, Bain T (2013) Improved cathode materials for microbial electrosynthesis. Energy Environ Sci 6:217–224

    Article  CAS  Google Scholar 

  64. Kelly PT, He Z (2013) Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 153:351–360

    Article  CAS  Google Scholar 

  65. Ghafari B, Hasan M, Aroua MK (2008) Bio-electrochemical removal of nitrate from water and wastewater—a review. Bioresour Technol 99:3965–3974

    Article  CAS  Google Scholar 

  66. Zhou MH, Wang W, Chi ML (2009) Enhancement on the simultaneous removal of nitrate and organic pollutants from groundwater by a three-dimensional bio-electrochemical reactor. Bioresour Technol 100:4662–4668

    Article  CAS  Google Scholar 

  67. Virdis B, Rabaey K, Yuan ZG (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42:3013–3024

    Article  CAS  Google Scholar 

  68. Virdis B, Rabaey K, Rozendal RA (2010) Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res 44:2970–2980

    Article  CAS  Google Scholar 

  69. Xie S, Liang P, Chen Y (2011) Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system. Bioresour Technol 102:348–354

    Article  CAS  Google Scholar 

  70. Liang P, Wei JC, Li M (2013) Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode. Front Environ Sci Eng 6:913–919

    Article  CAS  Google Scholar 

  71. Yan HJ, Saito T, Regan JM (2012) Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode. Water Res 46:2215–2224

    Article  CAS  Google Scholar 

  72. Zhang F, He Z (2012) Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell. Process Biochem 47:2146–2151

    Article  CAS  Google Scholar 

  73. Ghafari S, Hasan M, Aroua MK (2009) Nitrate remediation in a novel upflow bio-electrochemical reactor (UBER) using palm shell activated carbon as cathode material. Electrochim Acta 54:4164–4171

    Article  CAS  Google Scholar 

  74. Zhang YF, Angelidaki I (2013) A new method for in situ nitrate removal from groundwater using submerged microbial desalination−denitrification cell (SMDDC). Water Res 47:1827–1836

    Article  CAS  Google Scholar 

  75. Mook WT, Chakrabarti MH, Aroua MK et al (2012) Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review. Desalination 285:1–13

    Article  CAS  Google Scholar 

  76. Marianna V, Mario B, Davide D et al (2010) Effect of pH on the production of bacterial polyhydroxyalkanoates by mixed cultures enriched under periodic feeding. Process Biochem 45:714–−723

    Article  CAS  Google Scholar 

  77. Clauwaert P, Desloover J, Shea C et al (2009) Enhanced nitrogen removal in bio-electrochemical systems by pH control. Biotechnol Lett 31:1537–1543

    Article  CAS  Google Scholar 

  78. Chen D, Wei L, Zou ZC et al (2016) Bacterial communities in a novel three-dimensional bioelectrochemical denitrification system: the effects of pH. Appl Microbiol Biot 100:6805–6813

    Article  CAS  Google Scholar 

  79. Sukkasem C, Xu S, Park S et al (2008) Effect of nitrate on the performance of single chamber air cathode microbial fuel cells. Water Res 42:4743–4750

    Article  CAS  Google Scholar 

  80. Glass C, Silverstein JA (1998) Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Res Oxford 32:831–839

    Article  CAS  Google Scholar 

  81. Fernando CL, José CR, Barreiro MG (1998) Aluminium toxicity modulates nitrate to ammonia reduction. Photosynthetica 35:213–222

    Article  Google Scholar 

  82. Fernándeznava Y, Marañón E, Soons J et al (2010) Denitrification of high nitrate concentration wastewater using alternative carbon sources. J Hazard Mater 173:682–688

    Article  CAS  Google Scholar 

  83. Zhang Y, Zhong F, Xia S et al (2009) Effect of initial nitrate concentrations and heavy metals on autohydrogenotrohic denitrification. In: 2009 3rd International conference on bioinformatics and biomedical engineering

    Google Scholar 

  84. Zhao YX, Feng CP, Wang QG et al (2011) Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm–electrode reactor. J Hazard Mater 192:1033–1039

    Article  CAS  Google Scholar 

  85. Huang BC, Feng HJ, Wang MZ et al (2013) The effect of C/N ratio on nitrogen removal in a bioelectrochemical system. Bioresour Technol 132:91–98

    Article  CAS  Google Scholar 

  86. Huang BC, Feng HJ, Ding YC et al (2013) Microbial metabolism and activity in terms of nitrate removal in bioelectrochemical systems. Electrochim Acta 113:29–36

    Article  CAS  Google Scholar 

  87. Pan YT, Ni BJ, Bond PL et al (2013) Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Res 47:3273–3281

    Article  CAS  Google Scholar 

  88. Feng C, Huang L, Yu H et al (2015) Simultaneous phenol removal, nitrification and denitrification using microbial fuel cell technology. Water Res 76:160–170

    Article  CAS  Google Scholar 

  89. Zhou M, Fu W, Gu H et al (2007) Nitrate removal from groundwater by a novel three-dimensional electrode biofilm reactor. Electrochim Acta 52:6052–6059

    Article  CAS  Google Scholar 

  90. Bao LS, Hao WS (2006) Removal of nitrate nitrogen using biofilm-electrode process. Ind Water Wastewater 6:45–47

    Google Scholar 

  91. Wasik E, Bohdziewicz J, Błaszczyk M (2001) Removal of nitrate ions from natural water using a membrane bioreactor. Sep Purif Technol 22:383–392

    Article  Google Scholar 

  92. Wang Q, Feng C, Zhao Y et al (2009) Denitrification of nitrate contaminated groundwater with a fiber-based biofilm reactor. Bioresour Technol 100:2223–2227

    Article  CAS  Google Scholar 

  93. Lemmer H, Zaglauer A, Neef A et al (1997) Denitrification in a methanol-fed fixed-bed reactor. Part 2: composition and ecology of the bacterial community in the biofilms. Water Res 31:1903–1908

    Article  CAS  Google Scholar 

  94. Bonmatí A, Sotres A, Mu Y et al (2013) Oxalate degradation in a bioelectrochemical system: reactor performance and microbial community characterization. Bioresour Technol 143:147–153

    Article  CAS  Google Scholar 

  95. Sotres A, Diaz-Marcos J, Guivernau M et al (2014) Microbial community dynamics in two-chambered microbial fuel cells: effect of different ion exchange membranes. J Chem Technol Biotechnol 90:1497–1506

    Article  CAS  Google Scholar 

  96. Sotres A, Cerrillo M, Viñas M et al (2016) Nitrogen removal in a two-chambered microbial fuel cell: establishment of a nitrifying-denitrifying microbial community on an intermittent aerated cathode. Chem Eng J 285:905–916

    Article  CAS  Google Scholar 

  97. Nguyen VK, Hong S, Park Y et al (2015) Autotrophic denitrification performance and bacterial community at biocathodes of bioelectrochemical systems with either abiotic or biotic anodes. J Biosci Bioeng 119:180–187

    Article  CAS  Google Scholar 

  98. Wrighton KC, Virdis B, Clauwaert P et al (2010) Bacterial community structure corresponds to performance during cathodic nitrate reduction. ISME J 4:1443–1455

    Article  CAS  Google Scholar 

  99. Liessens J, Vanbrabant J, De Vos P et al (1992) Mixed culture hydrogenotrophic nitrate reduction in drinking water. Microb Ecol 24:271–290

    Article  CAS  Google Scholar 

  100. Park HI, Choi YJ, Pak D (2005) Autohydrogenotrophic denitrifying microbial community in a glass beads biofilm reactor. Biotechnol Lett 27:949–953

    Article  CAS  Google Scholar 

  101. Zhang Y, Zhong F, Xia S et al (2009) Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor. J Hazard Mater 170:203–209

    Article  CAS  Google Scholar 

  102. Driessche GV, Devreese B, Fitch J et al (2006) GHP, a new c-type green heme protein from Halochromatium salexigens and other proteobacteria. FEBS J 273:2801–2811

    Article  CAS  Google Scholar 

  103. Archer M, Banci L, Dikaya E et al (1997) Crystal structure of cytochrome c’ from Rhodocyclus gelatinosus and comparison with other cytochromes c’. J Biol Inorg Chem 2:611–622

    Article  CAS  Google Scholar 

  104. Doan TV, Lee TK, Shukla SK et al (2013) Increased nitrous oxide accumulation by bioelectrochemical denitrification under autotrophic conditions: kinetics and expression of denitrification pathway genes. Water Res 47:7087–7097

    Article  CAS  Google Scholar 

  105. Seifert K, Domka F (2005) Inhibiting effect of surfactants and heavy metal ions on the denitrification process. Pol J Environ Stud 14:87–93

    CAS  Google Scholar 

  106. Krzeminski S, Martin J, Brackett C (1973) The environmental impact of a quaternary ammonium bactericide. Household Pers Prod Ind 10:22

    CAS  Google Scholar 

  107. Watanabe T, Motoyama H, Kuroda M (2002) Denitrification and neutralization treatment by direct feeding of an acidic wastewater containing copper ion and high-strength nitrate to a bio-electrochemical reactor process. Water Res 35:4102–4110

    Article  Google Scholar 

  108. Miao Y, Liao R, Zhang XX et al (2015) Metagenomic insights into Cr(VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater. Water Res 76:43–52

    Article  CAS  Google Scholar 

  109. Nguyen VK, Park Y, Yang H et al (2016) Effect of the cathode potential and sulfate ions on nitrate reduction in a microbial electrochemical denitrification system. J Ind Microbiol Biot 43:783–793

    Article  CAS  Google Scholar 

  110. Cai J, Zheng P, Zhang J et al (2013) Simultaneous anaerobic sulfide and nitrate removal coupled with electricity generation in microbial fuel cell. Bioresour Technol 129C:224–228

    Article  CAS  Google Scholar 

  111. Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43:8113–8118

    Article  CAS  Google Scholar 

  112. Wiesner MR, Lowry GV, Alvarez P et al (2016) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Article  Google Scholar 

  113. Chen D, Wang XF, Yang K et al (2016) Response of a three dimensional bioelectrochemical denitrification system to the long-term presence of graphene oxide. Bioresour Technol 214:24–29

    Article  CAS  Google Scholar 

  114. Chen D, Yang K, Wei L et al (2016) Microbial community and metabolism activity in a bioelectrochemical denitrification system under long-term presence of p-nitrophenol. Bioresour Technol 218:189–195

    Article  CAS  Google Scholar 

  115. Drewnowski J, Fernandez-Morales F (2016) Heterotrophic anodic denitrification in microbial fuel cells. Sustain 86:561

    Article  CAS  Google Scholar 

  116. Zhang JQ, Zhang P, Zhang M et al (2013) Kinetics of substrate degradation and electricity generation in anodic denitrification microbial fuel cell (AD-MFC). Bioresour Technol 149:44–50

    Article  CAS  Google Scholar 

  117. Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48:901–911

    Article  CAS  Google Scholar 

  118. Doherty L, Zhao YQ, Zhao XH et al (2015) A review of a recently emerged technology: constructed wetland–microbial fuel cells. Water Res 85:38–45

    Article  CAS  Google Scholar 

  119. Wang J, Song X, Wang Y et al (2016) Nitrate removal and bioenergy production in constructed wetland coupled with microbial fuel cell: establishment of electrochemically active bacteria community on anode. Bioresour Technol 221:358–365

    Article  CAS  Google Scholar 

  120. Matheson FE, Sukias JP et al (2010) Nitrate removal processes in a constructed wetland treating drainage from dairy pasture. Ecol Eng 36:1260–1265

    Article  Google Scholar 

  121. Kim JR, Zuo Y, Regan JM et al (2008) Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol Bioeng 99:1120–1127

    Article  CAS  Google Scholar 

  122. Kuntke P, Geleji M, Bruning H et al (2011) Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell. Bioresour Technol 102:4376–4382

    Article  CAS  Google Scholar 

  123. Henze M, Van Loosdrecht MCM, Ekama GA et al (2008) Biological wastewater treatment: principles, modelling and design. IWA Publishing, London

    Google Scholar 

  124. Mctavish H, Fuchs JA, Hooper AB et al (1993) Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol 175:2436–2444

    Article  CAS  Google Scholar 

  125. Ge SJ, Wang SY, Yang X et al (2015) Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: a review. Chemosphere 140:85–98

    Article  CAS  Google Scholar 

  126. Min B, Kim J, Oh S et al (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968

    Article  CAS  Google Scholar 

  127. Xie ZF, Chen H, Zheng P et al (2013) Influence and mechanism of dissolved oxygen on the performance of Ammonia-oxidation microbial fuel cell. Int J Hydrogen Energ 38:10607–10615

    Article  CAS  Google Scholar 

  128. He Z, Kan JJ, Wang YB et al (2009) Electricity production coupled to ammonium in a microbial fuel cell. Environ Sci Technol 43:3391–3397

    Article  CAS  Google Scholar 

  129. Schröder C (2012) Comparing reduced partial charge models with polarizable simulations of ionic liquids. Phys Chem Chem Phys 14:3089–3102

    Article  CAS  Google Scholar 

  130. Sinha B, Annachhatre A (2007) Partial nitrification—operational parameters and microorganisms involved. Rev Environ Sci Biotechnol 6:285–313

    Article  CAS  Google Scholar 

  131. Zöllig H, Morgenroth E, Udert KM (2015) Inhibition of direct electrolytic ammonia oxidation due to a change in local pH. Electrochim Acta 56:348–355

    Article  CAS  Google Scholar 

  132. Kim DJ, Lee DI, Keller J (2006) Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresour Technol 97:459–468

    Article  CAS  Google Scholar 

  133. Kim T, An J, Lee H (2016) pH-dependent ammonia removal pathways in microbial fuel cell system. Bioresour Technol 215:290–295

    Article  CAS  Google Scholar 

  134. Bilanovic D, Battistoni P, Cecchi F (1999) Denitrification under high nitrate concentration and alternating anoxic conditions. Water Res 33:3311–3320

    Article  CAS  Google Scholar 

  135. Nam JY, Kim HW, Shin HS (2010) Ammonia inhibition of electricity generation in single-chambered microbial fuel cells. J Power Sources 195:6428–6433

    Article  CAS  Google Scholar 

  136. Nam JY, Kim HW, Shin HS (2011) Ammonia inhibition and microbial adaptation in continuous single-chamber microbial fuel cells. J Power Sources 196:6210–6213

    Article  CAS  Google Scholar 

  137. Cordruwisch R, Law Y, Cheng KY (2011) Ammonium as a sustainable proton shuttle in bioelectrochemical systems. Bioresour Technol 102:9691–9696

    Article  CAS  Google Scholar 

  138. Chen H, Zheng P, Zhang J et al (2014) Substrates and pathway of electricity generation in a nitrification-based microbial fuel cell. Bioresour Technol 161C:208–214

    Article  CAS  Google Scholar 

  139. Jadhav DA, Ghangrekar MM et al (2015) Effective ammonium removal by anaerobic oxidation in microbial fuel cells. Environ Technol 36:767–775

    Article  CAS  Google Scholar 

  140. Zhan G, Zhang L, Tao Y et al (2014) Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems. Electrochim Acta 135:345–350

    Article  CAS  Google Scholar 

  141. Purkhold U, Pommerening-Röser A, Juretschko S (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382

    Article  CAS  Google Scholar 

  142. Woese CR, Weisburg WG, Paster BJ (1984) The phylogeny of purple bacteria: the beta subdivision. Syst Appl Microbiol 5:327–336

    Article  CAS  Google Scholar 

  143. Junier P, Molina V, Dorador C (2010) Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl Microbiol Biotechnol 85:425–440

    Article  CAS  Google Scholar 

  144. Harms G, Layton AC, Dionisi HM (2003) Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol 37:343–351

    Article  CAS  Google Scholar 

  145. Schmidt I, Bock E (1997) Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol 167:106–111

    Article  CAS  Google Scholar 

  146. Schmidt I, Bock E (1998) Anaerobic ammonia oxidation by cell-free extracts of Nitrosomonas eutropha. Anton Leeuw Int J G 73:271–278

    Article  CAS  Google Scholar 

  147. Bock E, Schmidt I, Stüven R et al (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch Microbiol 163:16–20

    Article  CAS  Google Scholar 

  148. He Z, Kan J, Wang Y et al (2009) Electricity production coupled to ammonium in a microbial fuel cell. Environ Sci Technol 43:3391–3397

    Article  CAS  Google Scholar 

  149. Kuo DH, Robinson KG, Layton AC (2010) Transcription levels (amoA mRNA-based) and population dominance (amoA gene-based) of ammonia-oxidizing bacteria. J Ind Microbiol Biotechnol 37:751–757

    Article  CAS  Google Scholar 

  150. Fukushima T, Wu YJ, Whang LM (2012) The influence of salinity and ammonium levels on amoA mRNA expression of ammonia-oxidizing prokaryotes. Water Sci Technol 65:2228–2235

    Article  CAS  Google Scholar 

  151. Arp DJ, Sayavedra-Soto LA, Hommes NG (2002) Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch Microbiol 178:250–255

    Article  CAS  Google Scholar 

  152. Hommes NG, Sayavedra-Soto LA, Arp DJ (2001) Transcript analysis of multiple copies of amo (encoding ammonia monooxygenase) and hao (encoding hydroxylamine oxidoreductase) in Nitrosomonas europaea. J Bacteriol 183:1096–1100

    Article  CAS  Google Scholar 

  153. Fiencke C, Spieck E, Bock E (2005) In: Werner D, Newton W (eds) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Netherlands, pp 255–276

    Chapter  Google Scholar 

  154. Lucker S, Wagner M, Maixner F (2010) A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci 107:13479–13484

    Article  Google Scholar 

  155. Koops HP, Pommerening-Roser A (2001) Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol 37:1–9

    Article  CAS  Google Scholar 

  156. Pommerening-Röser A, Rath G, Koops H-P (1996) Phylogenetic diversity within the genus Nitrosomonas. Syst Appl Microbiol 19:344–351

    Article  Google Scholar 

  157. Fukushima T, Whang LM, Chiang TY (2013) Nitrifying bacterial community structures and their nitrification performance under sufficient and limited inorganic carbon conditions. Appl Microbiol Biotechnol 97:6513–6523

    Article  CAS  Google Scholar 

  158. Schmidt I, Sliekers O, Schmid M (2003) New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol Rev 27:481–492

    Article  CAS  Google Scholar 

  159. Sundermeyer-Klinger H, Meyer W, Warninghoff B (1984) Membrane-bound nitrite oxidoreductase of Nitrobacter: evidence for a nitrate reductase system. Arch Microbiol 140:153–158

    Article  CAS  Google Scholar 

  160. Zhang YF, Noori JS, Angelidaki I (2011) Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC). Energy Environ Sci 4:4340–4346

    Article  CAS  Google Scholar 

  161. Gouveia L, Neves C, Sebastião D et al (2014) Effect of light on the production of bioelectricity and added-value microalgae biomass in a photosynthetic alga microbial fuel cell. Bioresour Technol 154:171–177

    Article  CAS  Google Scholar 

  162. Elmekawy A, Hegab HM, Vanbroekhoven K et al (2014) Techno-productive potential of photosynthetic microbial fuel cells through different configurations. Renew Sust Energ Rev 39:617–627

    Article  CAS  Google Scholar 

  163. Wang X, Feng YJ, Liu J et al (2010) Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens Bioelectron 25:2639–2643

    Article  CAS  Google Scholar 

  164. Cao XX, Huang X, Liang P et al (2009) A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy Environ Sci 2:498–501

    Article  CAS  Google Scholar 

  165. Powell EE, Mapiour ML, Evitts RW et al (2009) Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresour Technol 100:269–274

    Article  CAS  Google Scholar 

  166. Sorokin C, Krauss RW (1958) The effects of light intensity on the growth rates of green algae. Plant Physiol 33:109–113

    Article  CAS  Google Scholar 

  167. Powell EE, Hill GA (2009) Economic assessment of an integrated bioethanol–biodiesel–microbial fuel cell facility utilizing yeast and photosynthetic algae. Chem Eng Res Des 87:1340–1348

    Article  CAS  Google Scholar 

  168. Strik DPBTB, Terlouw H, Hamelers HVM et al (2008) Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl Microbiol Biotechnol 81:659–668

    Article  CAS  Google Scholar 

  169. Jiang H, Luo S, Shi X et al (2013) A system combining microbial fuel cell with photo bioreactor for continuous domestic wastewater treatment and bioelectricity generation. J Cent South Univ 20:488–494

    Article  CAS  Google Scholar 

  170. Lobato J, González del Campo A, Fernández FJ et al (2013) Lagooning microbial fuel cells: a first approach by coupling electricity-producing microorganisms and algae. Appl Energy 110:220–226

    Article  CAS  Google Scholar 

  171. Rodrigo MA, Cañizares P, García H et al (2009) Study of the acclimation stage and of the effect of the biodegrade ability on the performance of a microbial fuel cell. Bioresour Technol 100:4704–4710

    Article  CAS  Google Scholar 

  172. Gajda I, Stinchcombe A, Greenman J et al (2014) Algal lagoon effect for oxygenating MFC cathodes. Int J Hydrog Energy 39:21857–21863

    Article  CAS  Google Scholar 

  173. Venkata MS, Srikanth S, Chiranjeevi P et al (2014) Algal biocathode for in situ terminal electron acceptor (TEA) production: synergetic association of bacteria-microalgae metabolism for the functioning of biofuel cell. Bioresour Technol 166:566–574

    Article  CAS  Google Scholar 

  174. Raman K, Lan JCW (2012) Performance and kinetic study of photomicrobial fuel cells (PMFCs) with different electrode distances. Appl Energy 100:100–105

    Article  CAS  Google Scholar 

  175. De Schamphelaire L, Rabaey K, Boeckx P et al (2008) Outlook for benefits of sediment microbial fuel cells with two bioelectrodes. Microb Biotechnol 1:446–462

    Article  CAS  Google Scholar 

  176. Reimers CE, Girguis P, Stecher HA et al (2006) Microbial fuel cell energy from an ocean cold seep. Geobiology 4:123–136

    Article  CAS  Google Scholar 

  177. Jeon HJ, Seo K, Lee SH et al (2012) Production of algal biomass (Chlorella vulgaris) using sediment microbial fuel cells. Bioresour Technol 109:308–311

    Article  CAS  Google Scholar 

  178. Xiao L, Young EB, Berges JA et al (2012) Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production. Environ Sci Technol 46:11459–11466

    Article  CAS  Google Scholar 

  179. Taylor AW, Frazier AW, Gurney EL (1963) Solubility products of magnesium ammonium and magnesium potassium phosphate. Trans Faraday Soc 59:1580–1584

    Article  CAS  Google Scholar 

  180. Ronteltap M, Maurer M, Hausher R et al (2010) Struvite precipitation from urine—influencing factors on particle size. Water Res 44:2038–2046

    Article  CAS  Google Scholar 

  181. Kumar R, Pal P et al (2015) Assessing the feasibility of N and P recovery by struvite precipitation from nutrient-rich wastewater: a review. Environ Sci Pollut R 22:17453–17464

    Article  CAS  Google Scholar 

  182. Cusick RD, Logan BE et al (2012) Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresour Technol 107:110–115

    Article  CAS  Google Scholar 

  183. Cao XX, Huang X, Liang P et al (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43:7148–7152

    Article  CAS  Google Scholar 

  184. Ronteltap M, Maurer M, Hausherr R (2010) Struvite precipitation from urine–influencing factors on particle size. Water Res 44:2038–2046

    Article  CAS  Google Scholar 

  185. Martell AE, Smith RM, Motekaitis RJ (1997) Critical selected stability constants of metal complexes, Version 4.0. NIST

    Google Scholar 

  186. Ronteltap M, Maurer M, Gujer W (2007) Struvite precipitation thermodynamics in source-separated urine. Water Res 41:977–984

    Article  CAS  Google Scholar 

  187. Stumm W, Morgan JJ (1996) Aquatic chem, 3rd edn. Wiley, New York

    Google Scholar 

  188. Huang H, Zhang P, Zhang Z (2016) Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology. J Clean Prod 127:302–310

    Article  CAS  Google Scholar 

  189. Hirooka K, Ichihashi O (2013) Phosphorus recovery from artificial wastewater by microbial fuel cell and its effect on power generation. Bioresour Technol 137:368–375

    Article  CAS  Google Scholar 

  190. Ichihashi O, Hirooka K (2012) Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresour Technol 114:303–307

    Article  CAS  Google Scholar 

  191. Almatouq A, Babatunde AO (2016) Concurrent phosphorus recovery and energy generation in mediator-less dual chamber microbial fuel cells: mechanisms and influencing factors. Int J Env Res Public Health 13:375

    Article  CAS  Google Scholar 

  192. De la Rubia MÁ, Walker M, Heaven S et al (2010) Preliminary trials of in situ ammonia stripping from source segregated domestic food waste digestate using biogas: effect of temperature and flow rate. Bioresour Technol 101:9486–9492

    Article  CAS  Google Scholar 

  193. Abouelenien F, Fujiwara W, Namba Y et al (2010) Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresour Technol 101:6368–6373

    Article  CAS  Google Scholar 

  194. Gangagni Rao A, Sasi Kanth Reddy T, Surya Prakash S et al (2008) Biomethanation of poultry litter leachate in UASB reactor coupled with ammonia stripper for enhancement of overall performance. Bioresour Technol 99:8679–8684

    Article  CAS  Google Scholar 

  195. Bonmatí A, Flotats X (2003) Air stripping of ammonia from pig slurry: characterization and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion. Waste Manag 23:261–272

    Article  CAS  Google Scholar 

  196. Kuntke P, Śmiech KM8, Bruning H et al (2012) Ammonium recovery and energy production from urine by a microbial fuel cell. Water Res 46:2627–2636

    Article  CAS  Google Scholar 

  197. Nancharaiah YV, Venkata Mohanb S, Lensc PNL (2016) Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems. Bioresour Technol 215:173–185

    Article  CAS  Google Scholar 

  198. Wu X, Modin O (2013) Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor. Bioresour Technol 146C:530–536

    Article  CAS  Google Scholar 

  199. William MLJ, Donald PM (2011) Toxicity of nitrite to fish: a review. Trans Am Fish Soc 115:183–195

    Google Scholar 

  200. Pan Y, Ni BJ, Bond PL et al (2013) Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Res 47:3273–3281

    Article  CAS  Google Scholar 

  201. Desloover J, Puig S, Virdis B et al (2011) Biocathodic nitrous oxide removal in bioelectrochemical systems. Environ Sci Technol 45:10557–10566

    Article  CAS  Google Scholar 

  202. Puig S, Serra M, Vilarsanz A et al (2011) Autotrophic nitrite removal in the cathode of microbial fuel cells. Bioresource Technol 102:4462–4467

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajun Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liang, Y., Feng, H. (2019). Removal and Recovery of Nitrogen Pollutants in Bioelectrochemical System. In: Wang, AJ., Liang, B., Li, ZL., Cheng, HY. (eds) Bioelectrochemistry Stimulated Environmental Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-10-8542-0_7

Download citation

Publish with us

Policies and ethics