Skip to main content

Molecular Components of Mechanotransduction Machinery

  • Chapter
  • First Online:
Mechanotransduction of the Hair Cell

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

  • 402 Accesses

Abstract

After decades of intense investigation, the molecular components of mammalian hair-cell mechanotransduction (MET) machinery have started to emerge. Convincing evidences suggested that tip links are composed of two atypical cadherin proteins, protocadherin 15 (PCDH15) and cadherin 23 (CDH23). Meanwhile, the identity of the MET channel is still not confirmative, although several promising candidates have been put forward. In this chapter, we will first introduce the recent progress of our understanding of tip links, as well as the so-called upper and lower tip-link complexes associated with them. Then we will focus on the MET channel that lies at the heart of the MET machinery. TMC1, TMC2, LHFPL5, TMIE, and CIB2 have been suggested to be integral components of the machinery, but confirmative evidences for them as the pore-forming subunits of the channel are still missing. Lastly, we will briefly discuss the recent identification of PIEZO2 as the channel responsible for the reverse-polarity MET currents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siemens, J., et al. 2004. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428 (6986): 950–955.

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed, Z.M., et al. 2006. The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15. The Journal of Neuroscience 26 (26): 7022–7034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kazmierczak, P., et al. 2007. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449 (7158): 87–91.

    Article  CAS  PubMed  Google Scholar 

  4. Bolz, H., et al. 2001. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nature Genetics 27 (1): 108–112.

    Article  CAS  PubMed  Google Scholar 

  5. Bork, J.M., et al. 2001. Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. American Journal of Human Genetics 68 (1): 26–37.

    Article  CAS  PubMed  Google Scholar 

  6. Ahmed, Z.M., et al. 2001. Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. American Journal of Human Genetics 69 (1): 25–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alagramam, K.N., et al. 2001. Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Human Molecular Genetics 10 (16): 1709–1718.

    Article  CAS  PubMed  Google Scholar 

  8. Ahmed, Z.M., et al. 2003. PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23. Human Molecular Genetics 12 (24): 3215–3223.

    Article  CAS  PubMed  Google Scholar 

  9. Mathur, P., and J. Yang. 2015. Usher syndrome: hearing loss, retinal degeneration and associated abnormalities. Biochimica et Biophysica Acta 1852 (3): 406–420.

    Article  CAS  PubMed  Google Scholar 

  10. Weil, D., et al. 1995. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374 (6517): 60–61.

    Article  CAS  PubMed  Google Scholar 

  11. Verpy, E., et al. 2000. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nature Genetics 26 (1): 51–55.

    Article  CAS  PubMed  Google Scholar 

  12. Bitner-Glindzicz, M., et al. 2000. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Nature Genetics 26 (1): 56–60.

    Article  CAS  PubMed  Google Scholar 

  13. Weil, D., et al. 2003. Usher syndrome type I G (USH1G) is caused by mutations in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin. Human Molecular Genetics 12 (5): 463–471.

    Article  CAS  PubMed  Google Scholar 

  14. Eudy, J.D., et al. 1998. Mutation of a gene encoding a protein with extracellular matrix motifs in Usher syndrome type IIa. Science 280 (5370): 1753–1757.

    Article  CAS  PubMed  Google Scholar 

  15. Weston, M.D., et al. 2004. Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of Usher syndrome type II. American Journal of Human Genetics 74 (2): 357–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ebermann, I., et al. 2007. A novel gene for Usher syndrome type 2: mutations in the long isoform of whirlin are associated with retinitis pigmentosa and sensorineural hearing loss. Human Genetics 121 (2): 203–211.

    Article  CAS  PubMed  Google Scholar 

  17. Joensuu, T., et al. 2001. Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3. American Journal of Human Genetics 69 (4): 673–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fields, R.R., et al. 2002. Usher syndrome type III: revised genomic structure of the USH3 gene and identification of novel mutations. American Journal of Human Genetics 71 (3): 607–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adato, A., et al. 2002. USH3A transcripts encode clarin-1, a four-transmembrane-domain protein with a possible role in sensory synapses. European Journal of Human Genetics 10 (6): 339–350.

    Article  CAS  PubMed  Google Scholar 

  20. Ebermann, I., et al. 2010. PDZD7 is a modifier of retinal disease and a contributor to digenic Usher syndrome. The Journal of Clinical Investigation 120 (6): 1812–1823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adato, A., et al. 2005. Interactions in the network of Usher syndrome type 1 proteins. Human Molecular Genetics 14 (3): 347–356.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, Q., et al. 2014. Whirlin and PDZ domain-containing 7 (PDZD7) proteins are both required to form the quaternary protein complex associated with Usher syndrome type 2. The Journal of Biological Chemistry 289 (52): 36070–36088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lagziel, A., et al. 2005. Spatiotemporal pattern and isoforms of cadherin 23 in wild type and waltzer mice during inner ear hair cell development. Developmental Biology 280 (2): 295–306.

    Article  CAS  PubMed  Google Scholar 

  24. Boggon, T.J., et al. 2002. C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296 (5571): 1308–1313.

    Article  CAS  PubMed  Google Scholar 

  25. Sotomayor, M., et al. 2010. Structural determinants of cadherin-23 function in hearing and deafness. Neuron 66 (1): 85–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boeda, B., et al. 2002. Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. The EMBO Journal 21 (24): 6689–6699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Siemens, J., et al. 2002. The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. Proceedings of the National Academy of Sciences of the United States of America 99 (23): 14946–14951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, Z., et al. 2008. MAGI-1, a candidate stereociliary scaffolding protein, associates with the tip-link component cadherin 23. The Journal of Neuroscience 28 (44): 11269–11276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu, Z., K. Oshima, and S. Heller. 2010. PIST regulates the intracellular trafficking and plasma membrane expression of cadherin 23. BMC Cell Biology 11: 80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Di Palma, F., R. Pellegrino, and K. Noben-Trauth. 2001. Genomic structure, alternative splice forms and normal and mutant alleles of cadherin 23 (Cdh23). Gene 281 (1-2): 31–41.

    Article  PubMed  Google Scholar 

  31. Yonezawa, S., et al. 2008. Redox-dependent structural ambivalence of the cytoplasmic domain in the inner ear-specific cadherin 23 isoform. Biochemical and Biophysical Research Communications 366 (1): 92–97.

    Article  CAS  PubMed  Google Scholar 

  32. Michel, V., et al. 2005. Cadherin 23 is a component of the transient lateral links in the developing hair bundles of cochlear sensory cells. Developmental Biology 280 (2): 281–294.

    Article  CAS  PubMed  Google Scholar 

  33. Kachar, B., et al. 2000. High-resolution structure of hair-cell tip links. Proceedings of the National Academy of Sciences of the United States of America 97 (24): 13336–13341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sotomayor, M., et al. 2012. Structure of a force-conveying cadherin bond essential for inner-ear mechanotransduction. Nature 492 (7427): 128–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lelli, A., et al. 2010. Development and regeneration of sensory transduction in auditory hair cells requires functional interaction between cadherin-23 and protocadherin-15. The Journal of Neuroscience 30 (34): 11259–11269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alagramam, K.N., et al. 2011. Mutations in protocadherin 15 and cadherin 23 affect tip links and mechanotransduction in mammalian sensory hair cells. PLoS One 6 (4): e19183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Di Palma, F., et al. 2001. Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nature Genetics 27 (1): 103–107.

    Article  PubMed  Google Scholar 

  38. Schwander, M., et al. 2009. A mouse model for nonsyndromic deafness (DFNB12) links hearing loss to defects in tip links of mechanosensory hair cells. Proceedings of the National Academy of Sciences of the United States of America 106 (13): 5252–5257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Manji, S.S., et al. 2011. An ENU-induced mutation of Cdh23 causes congenital hearing loss, but no vestibular dysfunction, in mice. The American Journal of Pathology 179 (2): 903–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pan, L., et al. 2009. Assembling stable hair cell tip link complex via multidentate interactions between harmonin and cadherin 23. Proceedings of the National Academy of Sciences of the United States of America 106 (14): 5575–5580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grillet, N., et al. 2009. Harmonin mutations cause mechanotransduction defects in cochlear hair cells. Neuron 62 (3): 375–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bahloul, A., et al. 2010. Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Human Molecular Genetics 19 (18): 3557–3565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Caberlotto, E., et al. 2011. Usher type 1G protein sans is a critical component of the tip-link complex, a structure controlling actin polymerization in stereocilia. Proceedings of the National Academy of Sciences of the United States of America 108 (14): 5825–5830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grati, M., and B. Kachar. 2011. Myosin VIIa and sans localization at stereocilia upper tip-link density implicates these Usher syndrome proteins in mechanotransduction. Proceedings of the National Academy of Sciences of the United States of America 108 (28): 11476–11481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kros, C.J., et al. 2002. Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nature Neuroscience 5 (1): 41–47.

    Article  CAS  PubMed  Google Scholar 

  46. Assad, J.A., and D.P. Corey. 1992. An active motor model for adaptation by vertebrate hair cells. The Journal of Neuroscience 12 (9): 3291–3309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamoah, E.N., and P.G. Gillespie. 1996. Phosphate analogs block adaptation in hair cells by inhibiting adaptation-motor force production. Neuron 17 (3): 523–533.

    Article  CAS  PubMed  Google Scholar 

  48. Eatock, R.A., D.P. Corey, and A.J. Hudspeth. 1987. Adaptation of mechanoelectrical transduction in hair cells of the bullfrog’s sacculus. The Journal of Neuroscience 7 (9): 2821–2836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Holt, J.R., D.P. Corey, and R.A. Eatock. 1997. Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ. The Journal of Neuroscience 17 (22): 8739–8748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu, Y.C., A.J. Ricci, and R. Fettiplace. 1999. Two components of transducer adaptation in auditory hair cells. Journal of Neurophysiology 82 (5): 2171–2181.

    Article  CAS  PubMed  Google Scholar 

  51. Stauffer, E.A., and J.R. Holt. 2007. Sensory transduction and adaptation in inner and outer hair cells of the mouse auditory system. Journal of Neurophysiology 98 (6): 3360–3369.

    Article  PubMed  Google Scholar 

  52. Steyger, P.S., P.G. Gillespie, and R.A. Baird. 1998. Myosin Ibeta is located at tip link anchors in vestibular hair bundles. The Journal of Neuroscience 18 (12): 4603–4615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Garcia, J.A., et al. 1998. Localization of myosin-Ibeta near both ends of tip links in frog saccular hair cells. The Journal of Neuroscience 18 (21): 8637–8647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schneider, M.E., et al. 2006. A new compartment at stereocilia tips defined by spatial and temporal patterns of myosin IIIa expression. The Journal of Neuroscience 26 (40): 10243–10252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gillespie, P.G., et al. 1999. Engineering of the myosin-ibeta nucleotide-binding pocket to create selective sensitivity to N(6)-modified ADP analogs. The Journal of Biological Chemistry 274 (44): 31373–31381.

    Article  CAS  PubMed  Google Scholar 

  56. Holt, J.R., et al. 2002. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108 (3): 371–381.

    Article  CAS  PubMed  Google Scholar 

  57. Stauffer, E.A., et al. 2005. Fast adaptation in vestibular hair cells requires myosin-1c activity. Neuron 47 (4): 541–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Geng, R., et al. 2013. Noddy, a mouse harboring a missense mutation in protocadherin-15, reveals the impact of disrupting a critical interaction site between tip-link cadherins in inner ear hair cells. The Journal of Neuroscience 33 (10): 4395–4404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Araya-Secchi, R., B.L. Neel, and M. Sotomayor. 2016. An elastic element in the protocadherin-15 tip link of the inner ear. Nature Communications 7: 13458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Powers, R.E., R. Gaudet, and M. Sotomayor. 2017. A partial calcium-free linker confers flexibility to inner-ear protocadherin-15. Structure 25: 482–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reiners, J., et al. 2005. Photoreceptor expression of the Usher syndrome type 1 protein protocadherin 15 (USH1F) and its interaction with the scaffold protein harmonin (USH1C). Molecular Vision 11: 347–355.

    CAS  PubMed  Google Scholar 

  62. Nie, H., et al. 2016. Plasma membrane targeting of protocadherin 15 is regulated by the Golgi-associated chaperone protein PIST. Neural Plasticity 2016: 8580675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Pepermans, E., et al. 2014. The CD2 isoform of protocadherin-15 is an essential component of the tip-link complex in mature auditory hair cells. EMBO Molecular Medicine 6 (7): 984–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Webb, S.W., et al. 2011. Regulation of PCDH15 function in mechanosensory hair cells by alternative splicing of the cytoplasmic domain. Development 138 (8): 1607–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao, B., et al. 2014. TMIE is an essential component of the mechanotransduction machinery of cochlear hair cells. Neuron 84 (5): 954–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Senften, M., et al. 2006. Physical and functional interaction between protocadherin 15 and myosin VIIa in mechanosensory hair cells. The Journal of Neuroscience 26 (7): 2060–2071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ricci, A.J., A.C. Crawford, and R. Fettiplace. 2003. Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron 40 (5): 983–990.

    Article  CAS  PubMed  Google Scholar 

  68. Beurg, M., et al. 2009. Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nature Neuroscience 12 (5): 553–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kurima, K., et al. 2002. Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nature Genetics 30 (3): 277–284.

    Article  PubMed  Google Scholar 

  70. Keresztes, G., H. Mutai, and S. Heller. 2003. TMC and EVER genes belong to a larger novel family, the TMC gene family encoding transmembrane proteins. BMC Genomics 4 (1): 24.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kurima, K., et al. 2003. Characterization of the transmembrane channel-like (TMC) gene family: functional clues from hearing loss and epidermodysplasia verruciformis. Genomics 82 (3): 300–308.

    Article  CAS  PubMed  Google Scholar 

  72. Kawashima, Y., et al. 2011. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. The Journal of Clinical Investigation 121 (12): 4796–4809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Labay, V., et al. 2010. Topology of transmembrane channel-like gene 1 protein. Biochemistry 49 (39): 8592–8598.

    Article  CAS  PubMed  Google Scholar 

  74. Scheffer, D.I., et al. 2015. Gene expression by mouse inner ear hair cells during development. The Journal of Neuroscience 35 (16): 6366–6380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shen, J., et al. 2015. SHIELD: an integrative gene expression database for inner ear research. Database: The Journal of Biological Databases and Curation 2015: bav071.

    Article  PubMed  CAS  Google Scholar 

  76. Geleoc, G.S., and J.R. Holt. 2003. Developmental acquisition of sensory transduction in hair cells of the mouse inner ear. Nature Neuroscience 6 (10): 1019–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kurima, K., et al. 2015. TMC1 and TMC2 localize at the site of mechanotransduction in mammalian inner ear hair cell stereocilia. Cell Reports 12 (10): 1606–1617.

    Article  CAS  PubMed  Google Scholar 

  78. Maeda, R., et al. 2014. Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proceedings of the National Academy of Sciences of the United States of America 111 (35): 12907–12912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Beurg, M., et al. 2015. Subunit determination of the conductance of hair-cell mechanotransducer channels. Proceedings of the National Academy of Sciences of the United States of America 112 (5): 1589–1594.

    Article  CAS  PubMed  Google Scholar 

  80. Vreugde, S., et al. 2002. Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nature Genetics 30 (3): 257–258.

    Article  PubMed  Google Scholar 

  81. Steel, K.P., and G.R. Bock. 1980. The nature of inherited deafness in deafness mice. Nature 288 (5787): 159–161.

    Article  CAS  PubMed  Google Scholar 

  82. Marcotti, W., et al. 2006. Tmc1 is necessary for normal functional maturation and survival of inner and outer hair cells in the mouse cochlea. The Journal of Physiology 574 (Pt 3): 677–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim, K.X., et al. 2013. The role of transmembrane channel-like proteins in the operation of hair cell mechanotransducer channels. The Journal of General Physiology 142 (5): 493–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pan, B., et al. 2013. TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79 (3): 504–515.

    Article  CAS  PubMed  Google Scholar 

  85. Cunningham, C.L., et al. 2017. The murine catecholamine methyltransferase mTOMT is essential for mechanotransduction by cochlear hair cells. eLife 6: e24318.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Erickson, T., et al. 2017. Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by transmembrane O-methyltransferase (Tomt). eLife 6: e28474.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ahmed, Z.M., et al. 2008. Mutations of LRTOMT, a fusion gene with alternative reading frames, cause nonsyndromic deafness in humans. Nature Genetics 40 (11): 1335–1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Du, X., et al. 2008. A catechol-O-methyltransferase that is essential for auditory function in mice and humans. Proceedings of the National Academy of Sciences of the United States of America 105 (38): 14609–14614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fettiplace, R. 2016. Is TMC1 the hair cell mechanotransducer channel? Biophysical Journal 111 (1): 3–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Corey, D.P., and J.R. Holt. 2016. Are TMCs the mechanotransduction channels of vertebrate hair cells? The Journal of Neuroscience 36 (43): 10921–10926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu, Z., and U. Muller. 2016. Molecular identity of the mechanotransduction channel in hair cells: not quiet there yet. The Journal of Neuroscience 36 (43): 10927–10934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chatzigeorgiou, M., et al. 2013. tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature 494 (7435): 95–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Longo-Guess, C.M., et al. 2007. Targeted knockout and lacZ reporter expression of the mouse Tmhs deafness gene and characterization of the hscy-2J mutation. Mammalian Genome 18 (9): 646–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xiong, W., et al. 2012. TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells. Cell 151 (6): 1283–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Petit, M.M., et al. 1999. LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new family of LHFP-like genes. Genomics 57 (3): 438–441.

    Article  CAS  PubMed  Google Scholar 

  96. Longo-Guess, C.M., et al. 2005. A missense mutation in the previously undescribed gene Tmhs underlies deafness in hurry-scurry (hscy) mice. Proceedings of the National Academy of Sciences of the United States of America 102 (22): 7894–7899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gunzel, D. 2017. Claudins: vital partners in transcellular and paracellular transport coupling. Pflügers Archiv 469 (1): 35–44.

    Article  PubMed  CAS  Google Scholar 

  98. Kar, R., et al. 2012. Biological role of connexin intercellular channels and hemichannels. Archives of Biochemistry and Biophysics 524 (1): 2–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Syeda, R., et al. 2016. LRRC8 proteins form volume-regulated anion channels that sense ionic strength. Cell 164 (3): 499–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jackson, A.C., and R.A. Nicoll. 2011. The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron 70 (2): 178–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kalay, E., et al. 2006. Mutations in the lipoma HMGIC fusion partner-like 5 (LHFPL5) gene cause autosomal recessive nonsyndromic hearing loss. Human Mutation 27 (7): 633–639.

    Article  CAS  PubMed  Google Scholar 

  102. Shabbir, M.I., et al. 2006. Mutations of human TMHS cause recessively inherited non-syndromic hearing loss. Journal of Medical Genetics 43 (8): 634–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mitchem, K.L., et al. 2002. Mutation of the novel gene Tmie results in sensory cell defects in the inner ear of spinner, a mouse model of human hearing loss DFNB6. Human Molecular Genetics 11 (16): 1887–1898.

    Article  CAS  PubMed  Google Scholar 

  104. Karuppasamy, S., et al. 2011. Subcellular localization of the transmembrane inner ear (Tmie) protein in a stable Tmie-expressing cell line. Laboratory Animal Research 27 (4): 339–342.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Su, M.C., et al. 2008. Expression and localization of Tmie in adult rat cochlea. Histochemistry and Cell Biology 130 (1): 119–126.

    Article  CAS  PubMed  Google Scholar 

  106. O’Hagan, R., M. Chalfie, and M.B. Goodman. 2005. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nature Neuroscience 8 (1): 43–50.

    Article  PubMed  CAS  Google Scholar 

  107. Naz, S., et al. 2002. Mutations in a novel gene, TMIE, are associated with hearing loss linked to the DFNB6 locus. American Journal of Human Genetics 71 (3): 632–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cho, K.I., et al. 2006. The circling mouse (C57BL/6J-cir) has a 40-kilobase genomic deletion that includes the transmembrane inner ear (tmie) gene. Comparative Medicine 56 (6): 476–481.

    CAS  PubMed  Google Scholar 

  109. Chung, W.H., et al. 2007. Cochlear pathology of the circling mouse: a new mouse model of DFNB6. Acta Oto-Laryngologica 127 (3): 244–251.

    Article  CAS  PubMed  Google Scholar 

  110. Seki, N., et al. 1999. Structure, expression profile and chromosomal location of an isolog of DNA-PKcs interacting protein (KIP) gene. Biochimica et Biophysica Acta 1444 (1): 143–147.

    Article  CAS  PubMed  Google Scholar 

  111. Riazuddin, S., et al. 2012. Alterations of the CIB2 calcium- and integrin-binding protein cause Usher syndrome type 1J and nonsyndromic deafness DFNB48. Nature Genetics 44 (11): 1265–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hager, M., et al. 2008. Cib2 binds integrin alpha7Bbeta1D and is reduced in laminin alpha2 chain-deficient muscular dystrophy. The Journal of Biological Chemistry 283 (36): 24760–24769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Giese, A.P.J., et al. 2017. CIB2 interacts with TMC1 and TMC2 and is essential for mechanotransduction in auditory hair cells. Nature Communications 8 (1): 43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Gentry, H.R., et al. 2005. Structural and biochemical characterization of CIB1 delineates a new family of EF-hand-containing proteins. The Journal of Biological Chemistry 280 (9): 8407–8415.

    Article  CAS  PubMed  Google Scholar 

  115. Blazejczyk, M., et al. 2009. Biochemical characterization and expression analysis of a novel EF-hand Ca2+ binding protein calmyrin2 (Cib2) in brain indicates its function in NMDA receptor mediated Ca2+ signaling. Archives of Biochemistry and Biophysics 487 (1): 66–78.

    Article  CAS  PubMed  Google Scholar 

  116. Huang, H., J.N. Bogstie, and H.J. Vogel. 2012. Biophysical and structural studies of the human calcium- and integrin-binding protein family: understanding their functional similarities and differences. Biochemistry and Cell Biology 90 (5): 646–656.

    Article  CAS  PubMed  Google Scholar 

  117. Zhu, W., et al. 2017. CIB2 negatively regulates oncogenic signaling in ovarian cancer via sphingosine kinase 1. Cancer Research 77 (18): 4823–4834.

    CAS  PubMed  Google Scholar 

  118. Rato, S., et al. 2010. Novel HIV-1 knockdown targets identified by an enriched kinases/phosphatases shRNA library using a long-term iterative screen in Jurkat T-cells. PLoS One 5 (2): e9276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Godinho-Santos, A., et al. 2016. CIB1 and CIB2 are HIV-1 helper factors involved in viral entry. Scientific Reports 6: 30927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Patel, K., et al. 2015. A novel C-terminal CIB2 (Calcium and Integrin Binding Protein 2) mutation associated with non-syndromic hearing loss in a hispanic family. PLoS One 10 (10): e0133082.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Seco, C.Z., et al. 2016. Novel and recurrent CIB2 variants, associated with nonsyndromic deafness, do not affect calcium buffering and localization in hair cells. European Journal of Human Genetics 24 (4): 542–549.

    Article  CAS  PubMed  Google Scholar 

  122. Michel, V., et al. 2017. CIB2, defective in isolated deafness, is key for auditory hair cell mechanotransduction and survival. EMBO Molecular Medicine 9 (12): 1711–1731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Booth, K.T., et al. 2018. Variants in CIB2 cause DFNB48 and not USH1J. Clinical Genetics. https://doi.org/10.1111/cge.13170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zou, J., et al. 2017. The roles of USH1 proteins and PDZ domain-containing USH proteins in USH2 complex integrity in cochlear hair cells. Human Molecular Genetics 26 (3): 624–636.

    CAS  PubMed  Google Scholar 

  125. Wang, Y., et al. 2017. Loss of CIB2 causes profound hearing loss and abolishes mechanoelectrical transduction in mice. Frontiers in Molecular Neuroscience 10: 401.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Shotwell, S.L., R. Jacobs, and A.J. Hudspeth. 1981. Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Annals of the New York Academy of Sciences 374: 1–10.

    Article  CAS  PubMed  Google Scholar 

  127. Kindt, K.S., G. Finch, and T. Nicolson. 2012. Kinocilia mediate mechanosensitivity in developing zebrafish hair cells. Developmental Cell 23 (2): 329–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Marcotti, W., et al. 2014. Transduction without tip links in cochlear hair cells is mediated by ion channels with permeation properties distinct from those of the mechano-electrical transducer channel. The Journal of Neuroscience 34 (16): 5505–5514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Michalski, N., et al. 2007. Molecular characterization of the ankle-link complex in cochlear hair cells and its role in the hair bundle functioning. The Journal of Neuroscience 27 (24): 6478–6488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stepanyan, R., and G.I. Frolenkov. 2009. Fast adaptation and Ca2+ sensitivity of the mechanotransducer require myosin-XVa in inner but not outer cochlear hair cells. The Journal of Neuroscience 29 (13): 4023–4034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Beurg, M., K.X. Kim, and R. Fettiplace. 2014. Conductance and block of hair-cell mechanotransducer channels in transmembrane channel-like protein mutants. The Journal of General Physiology 144 (1): 55–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Beurg, M., et al. 2016. Development and localization of reverse-polarity mechanotransducer channels in cochlear hair cells. Proceedings of the National Academy of Sciences of the United States of America 113 (24): 6767–6772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wu, Z., et al. 2017. Mechanosensory hair cells express two molecularly distinct mechanotransduction channels. Nature Neuroscience 20 (1): 24–33.

    Article  CAS  PubMed  Google Scholar 

  134. Coste, B., et al. 2010. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330 (6000): 55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Woo, S.H., et al. 2014. Piezo2 is required for Merkel-cell mechanotransduction. Nature 509 (7502): 622–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ranade, S.S., et al. 2014. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516 (7529): 121–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Woo, S.H., et al. 2015. Piezo2 is the principal mechanotransduction channel for proprioception. Nature Neuroscience 18 (12): 1756–1762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nonomura, K., et al. 2017. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature 541 (7636): 176–181.

    Article  CAS  PubMed  Google Scholar 

  139. Coste, B., et al. 2013. Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of Distal Arthrogryposis. Proceedings of the National Academy of Sciences of the United States of America 110 (12): 4667–4672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. McMillin, M.J., et al. 2014. Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis type 5. American Journal of Human Genetics 94 (5): 734–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Delle Vedove, A., et al. 2016. Biallelic loss of proprioception-related PIEZO2 causes muscular atrophy with perinatal respiratory distress, arthrogryposis, and scoliosis. American Journal of Human Genetics 99 (5): 1206–1216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chesler, A.T., et al. 2016. The role of PIEZO2 in human mechanosensation. The New England Journal of Medicine 375 (14): 1355–1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Indzhykulian, A.A., et al. 2013. Molecular remodeling of tip links underlies mechanosensory regeneration in auditory hair cells. PLoS Biology 11 (6): e1001583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, Z. (2018). Molecular Components of Mechanotransduction Machinery. In: Mechanotransduction of the Hair Cell. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8557-4_4

Download citation

Publish with us

Policies and ethics