Skip to main content

Nanofabrication of Myconanoparticles: A Future Prospect

  • Chapter
  • First Online:
Fungal Nanobionics: Principles and Applications

Abstract

Nanofabrications of nanomaterials are widely used in electronic industries related to integrated circuits and visual display. There in electronics the more popular word is nanolithography. The synthesis methods of myconanoparticles (MNPs) are eco-friendly, easy and less costly than chemically synthesized nanomaterials. Till now a full control over the fungal growth is possible, but the same is not possible for the synthesis of MNPs either through intra- or extracellular environment. Myconanoparticles are generally large in size with high standard deviation and less uniformity. The lack of uniformity and some specific structural requirement for optical properties is a big challenge for the applicability of MNPs. Fabrication is a method which can be applied for reshaping the MNPs. Nanofabrication is the future of MNPs processing for its wide-scale practical and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1(1):47–53

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc. 124(41):12108–12109

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Balaji D, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar B, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B: Biointerfaces 68(1):88–92

    Article  CAS  PubMed  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15(26):2583–2589

    Article  CAS  Google Scholar 

  • Baskar G, Chandhuru J, Fahad KS, Praveen A (2013) Mycological synthesis, characterization and antifungal activity of zinc oxide nanoparticles. Asian J Phar Technol 3(4):142–146

    Google Scholar 

  • Berggren KK, Bard A, Wilbur JL, Gillaspy JD (1995) Microlithography by using neutral metastable atoms and self-assembled monolayers. Science 269(5228):1255

    Article  CAS  PubMed  Google Scholar 

  • Berry V, Gole A, Kundu S, Murphy CJ, Saraf RF (2005) Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems. J Am Chem Soc 127(50):17600–17601

    Article  CAS  PubMed  Google Scholar 

  • Binupriya A, Sathishkumar M, Vijayaraghavan K, Yun S-I (2010) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177(1):539–545

    Article  CAS  PubMed  Google Scholar 

  • Cattoni A, Chen J, Decanini D, Shi J, Haghiri-Gosnet A-M (2011) Soft UV nanoimprint lithography: a versatile tool for nanostructuration at the 20nm scale. In: Recent advances in nanofabrication techniques and applications. InTech, Rijeka

    Google Scholar 

  • Chen WR, Adams RL, Carubelli R, Nordquist RE (1997) Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment. Cancer Lett 115(1):25–30

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Cranton W, Fihn M (2012) Handbook of visual display technology, vol 131. Springer, Berlin

    Book  Google Scholar 

  • Chon JW, Bullen C, Zijlstra P, Gu M (2007) Spectral encoding on gold nanorods doped in a silica sol–gel matrix and its application to high-density optical data storage. Adv Funct Mater 17(6):875–880

    Article  CAS  Google Scholar 

  • Cobley CM, Rycenga M, Zhou F, Li Z-Y, Xia Y (2009) Controlled etching as a route to high quality silver nanospheres for optical studies. J Phys Chem C 113(39):16975–16982

    Article  CAS  Google Scholar 

  • Cui B (2011a) Recent advances in nanofabrication techniques and applications

    Google Scholar 

  • Cui B (2011b) Ultrafast fabrication of metal nanostructures using pulsed laser melting. In: Recent advances in nanofabrication techniques and applications. InTech, Rijeka

    Chapter  Google Scholar 

  • Doherty JA (1979) Recent advances in electron-beam systems for mask making. Solid State Technol 22(5):83–88

    Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6(1):103–109

    Article  CAS  Google Scholar 

  • Foroughi-Abari A, Cadien K (2012) Atomic layer deposition for nanotechnology. In: Nanofabrication. Springer, Berlin, pp 143–161

    Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1):132–140

    Article  CAS  Google Scholar 

  • Gorelikov I, Field LM, Kumacheva E (2004) Hybrid microgels photoresponsive in the near-infrared spectral range. J Am Chem Soc 126(49):15938–15939

    Article  CAS  PubMed  Google Scholar 

  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248

    Article  CAS  PubMed  Google Scholar 

  • Karg M, Pastoriza-Santos I, Pérez-Juste J, Hellweg T, Liz-Marzán LM (2007) Nanorod-Coated PNIPAM Microgels: thermoresponsive optical properties. Small (Weinheim an der Bergstrasse, Germany) 3(7):1222–1229

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel M, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B: Biointerfaces 71(1):133–137

    Article  CAS  PubMed  Google Scholar 

  • Kim H, McIntyre PC (2006) Atomic layer deposition of ultrathin metal-oxide films for nano-scale device applications. J Korean Phys Soc 48(1):5–17

    CAS  Google Scholar 

  • Kumar SA, Ansary AA, Ahmad A, Khan M (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3(2):190–194

    Article  CAS  Google Scholar 

  • Lee K-S, El-Sayed MA (2005) Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B 109(43):20331–20338

    Article  CAS  PubMed  Google Scholar 

  • Leskelä M, Ritala M (2002) Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409(1):138–146

    Article  Google Scholar 

  • Liu X, Du D, Mourou G (1997) Laser ablation and micromachining with ultrashort laser pulses. IEEE J Quantum Electron 33(10):1706–1716

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar P, Alam M, Kumar R (2001a) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar P, Alam M (2001b) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40(19):3585–3588

    Article  CAS  Google Scholar 

  • Murphy CJ, Orendorff CJ (2005) Alignment of gold nanorods in polymer composites and on polymer surfaces. Adv Mater 17(18):2173–2177

    Article  CAS  Google Scholar 

  • Ni W, Kou X, Yang Z, Wang J (2008) Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2(4):677–686. https://doi.org/10.1021/nn7003603

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Juste J, Rodríguez-González B, Mulvaney P, Liz-Marzán LM (2005) Optical control and patterning of gold-nanorod–poly (vinyl alcohol) nanocomposite films. Adv Funct Mater 15(7):1065–1071

    Article  Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer International Publishing (ISBN: 978-3-319-42989-2)

    Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer International Publishing (ISBN 978-3-319-68423-9)

    Google Scholar 

  • Prasad R, Pandey R and Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi:https://doi.org/10.1002/wnan.1363

    Article  PubMed  Google Scholar 

  • Ravindra B, Rajasab A (2014) A comparative study on biosynthesis of silver nanoparticles using four different fungal species. Int J Pharm Sci 6:372–376

    Google Scholar 

  • Riddin T, Gericke M, Whiteley C (2006) Analysis of the inter-and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17(14):3482

    Article  CAS  PubMed  Google Scholar 

  • Saa L, Coronado-Puchau M, Pavlov V, Liz-Marzan LM (2014) Enzymatic etching of gold nanorods by horseradish peroxidase and application to blood glucose detection. Nanoscale 6(13):7405–7409. https://doi.org/10.1039/C4nr01323a

    Article  PubMed  CAS  Google Scholar 

  • Saglam N, Yesilada O, Cabuk A, Sam M, Saglam S, Ilk S, Emul E, Celik PA, Gurel E (2016) Innovation of strategies and challenges for fungal nanobiotechnology. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 25–46

    Chapter  Google Scholar 

  • Soppera O, Dirani A, Stehlin F, Ridaoui H, Spangenberg A, Wieder F, Roucoules V (2011) DUV Interferometry for micro and nanopatterned surfaces. In: Recent advances in nanofabrication techniques and applications. InTech, Rijeka

    Google Scholar 

  • Stepanova M, Dew S (2011) Nanofabrication: techniques and principles. Springer, Vienna

    Google Scholar 

  • Tsung C-K, Kou X, Shi Q, Zhang J, Yeung MH, Wang J, Stucky GD (2006) Selective shortening of single-crystalline gold nanorods by mild oxidation. J Am Chem Soc 128(16):5352–5353

    Article  CAS  PubMed  Google Scholar 

  • Walker P, Tarn WH (1990) CRC handbook of metal etchants. CRC Press, Boca Raton

    Google Scholar 

  • Wanzenboeck HD, Waid S (2011) Focused ion beam lithography. In: Recent advances in nanofabrication techniques and applications. InTech, Rijeka

    Google Scholar 

  • Wen T, Zhang H, Tang X, Chu W, Liu W, Ji Y, Hu Z, Hou S, Hu X, Wu X (2013) Copper ion assisted reshaping and etching of gold nanorods: mechanism studies and applications. J Phys Chem C 117(48):25769–25777

    Article  CAS  Google Scholar 

  • Zou R, Guo X, Yang J, Li D, Peng F, Zhang L, Wang H, Yu H (2009) Selective etching of gold nanorods by ferric chloride at room temperature. CrystEngComm 11(12):2797. https://doi.org/10.1039/b911902g

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boddula, R., Dubey, P., Gautam, S., Pothu, R., Saran, A. (2018). Nanofabrication of Myconanoparticles: A Future Prospect. In: Prasad, R., Kumar, V., Kumar, M., Wang, S. (eds) Fungal Nanobionics: Principles and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-8666-3_8

Download citation

Publish with us

Policies and ethics