Skip to main content

Preparation and Characterization

  • Chapter
  • First Online:
Advances in Lead-Free Piezoelectric Materials

Abstract

Preparation technique and characterization method are critical aspects to a functional material. The preparation techniques strongly affect the electrical properties of a material. In this chapter, we pay much attention to several preparation techniques of lead-free piezoelectric materials including ceramic, nanostructure, thin film and single crystal. The influences of different preparation techniques on electrical properties and microstructure of a material are also addressed. In addition, various characterization methods on crystal structure, domain structure and electrical properties are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu JG, Xiao DQ, Zhu JG (2015) Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115:2559–2595

    Article  CAS  Google Scholar 

  2. Wu AY, Vilarnho PM, Miranda-Salvado IM, Baptista JL (2000) Sol-gel preparation of lead zirconate titanate powders and ceramics: effect of alkoxide stabilizers and lead precursors. J Am Ceram Soc 83(6):1379–1385

    Article  CAS  Google Scholar 

  3. Wu X, Kwok WK, Li FL (2013) Upconversion fluorescence studies of sol–gel-derived Er-doped KNN ceramics. J Alloy Compd 580:89–92

    Article  CAS  Google Scholar 

  4. Kim CY, Sekino T, Niihara K (2003) Synthesis of bismuth sodium titanate nanosized powders by solution/sol-gel process. J Am Ceram Soc 86(9):1464–1467

    Article  CAS  Google Scholar 

  5. Zhang DQ, Qin ZC, Yang XY, Zhu HB, Cao MS (2011) Study on synthesis and evolution of sodium potassium niobate ceramic powders by an oxalic acid-based sol–gel method. J Sol-Gel Sci Technol 57:31–35

    Article  CAS  Google Scholar 

  6. Kumar P, Pattanaik M, Sonia (2013) Synthesis and characterizations of KNN ferroelectric ceramics near 50/50 MPB. Ceram Int 39:65–69

    Google Scholar 

  7. Villegas M, Caballero AC, Moure C, Duran P, Fernandez JF (1999) Low-temperature sintering and electrical properties of chemically W-doped Bi4Ti3O12 ceramics. J Eur Ceram Soc 19:1183–1186

    Article  CAS  Google Scholar 

  8. Wu JG, Wang XP, Cheng XJ, Zheng T, Zhang BY, Xiao DQ, Zhu JG, Lou XJ (2014) New potassium-sodium niobate lead-free piezoceramic: giant-d33 vs. sintering temperature. J Appl Phys 115:114104

    Article  CAS  Google Scholar 

  9. Zhang BY, Wu JG, Cheng XJ, Wang XP, Xiao DQ, Zhu JG, Wang XJ, Lou XJ (2013) Lead-free piezoelectrics based on potassium-sodium niobate with giant d33. ACS Appl Mater Interfaces 5:7718–7725

    Article  CAS  Google Scholar 

  10. Li E, Kakemoto H, Wada S, Tsurumi T (2007) Influence of CuO on the structure and piezoelectric properties of the alkaline niobate-based lead-free ceramics. J Am Ceram Soc 90(6):1787–1791

    Article  CAS  Google Scholar 

  11. Liu DM, Zheng QJ, Kwok KW (2010) Dielectric and piezoelectric properties of MnO2-doped K0.5Na0.5Nb0.92Sb0.08O3 lead-free ceramics. J Mater Sci: Mater Electron 21:649–655

    Google Scholar 

  12. Pang XM, Qiu JH, Zhu KJ (2012) Effect of ZnO on the microstructure and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. J Mater Sci: Mater Electron 23:1083–1086

    CAS  Google Scholar 

  13. Ok YP, Ji HN, Kim KS, Tai WP, Seol JH, Hong IK, Lee JS (2011) Sintering and piezoelectric properties of lead-free (K0.38Na0.58Li0.04)(Nb0.86Ta0.10Sb0.04)O3 ceramics doped with Fe2O3. Mater Sci Eng 18:092053

    Google Scholar 

  14. Malic B, Bernard J, Bencan A, Kosec M (2008) Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics. J Eur Ceram Soc 28:1191–1196

    Article  CAS  Google Scholar 

  15. Matsubara M, Yamaguchi T, Kikuta K, Hirno SI (2004) Sinterability and piezoelectric properties of (K, Na)NbO3 ceramics with novel sintering aid. Jpn J Appl Phys 43(10):7159–7163

    Article  CAS  Google Scholar 

  16. Matsubara M, Yamaguchi T, Kikuta K, Hirno SI (2005) Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Jpn J Appl Phys 44(1A):258–263

    Article  CAS  Google Scholar 

  17. Ryu JH, Choi JJ, Hahn BD, Park DS, Yoon WH, Kim KY (2007) Sintering and piezoelectric properties of KNN ceramics doped with KZT. IEEE T Ultrason Ferr 54(12):2510–2515

    Article  Google Scholar 

  18. Fisher JG, Rout D, Moon KS, Kang SJL (2009) Structural changes in potassium sodium niobate ceramics sintered in different atmospheres. J Alloy Compd 479:467–472

    Article  CAS  Google Scholar 

  19. Vendrell X, García JE, Rubio-Marcos F, Ochoa DA, Mestres L, Fernández JF (2013) Exploring different sintering atmospheres to reduce nonlinear response of modified KNN piezoceramics. J Eur Ceram Soc 33:825–831

    Article  CAS  Google Scholar 

  20. Fisher JG, Kang SJL (2009) Microstructural changes in (K0.5Na0.5)NbO3 ceramics sintered in various atmospheres. J Eur Ceram Soc 29:2581–2588

    Article  CAS  Google Scholar 

  21. Li JF, Wang K (2006) Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by Spark Plasma sintering. J Am Ceram Soc 89(2):706–709

    Article  CAS  Google Scholar 

  22. Feizpour M, Bafrooei HB, Hayai R, Ebadzadeh T (2014) Microwave-assisted synthesis and sintering of potassium sodium niobate lead-free piezoelectric ceramics. Ceram Int 40:871–877

    Article  CAS  Google Scholar 

  23. Jaeger RE, Egerton L (1962) Hot pressing of potassium-sodium niobates. J Am Ceram Soc 45:209–213

    Article  CAS  Google Scholar 

  24. Haertling GH (1967) Properties of hot-pressed ferroelectric alkali niobate ceramics. J Am Ceram Soc 50:329–330

    Article  CAS  Google Scholar 

  25. Tani T, Kimura T (2006) Reactive-templated grain growth processing for lead free piezoelectric ceramics. Adv Appl Ceram 105:55–63

    Article  CAS  Google Scholar 

  26. Messing GL, Trolier-McKinstry S, Sabolsky EM, Duran C, Kwon S, Brahmaroutu B, Park P, Yilmaz H, Rehrig PW, Eitel KB, Suvaci E, Seabaugh M, Oh KS (2004) Templated grain growth of textured piezoelectric ceramics. Crit Rev Solid State 29:45–96

    Article  CAS  Google Scholar 

  27. Kimura T (2006) Application of texture engineering to piezoelectric ceramics—a review. J Ceram Soc Jan 114(1):15–25

    Google Scholar 

  28. Satio Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87

    Article  CAS  Google Scholar 

  29. Maurya D, Pramanick A, An K, Priya S (2012) Enhanced piezoelectricity and nature of electric-field induced structural phase transformation in textured lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics. Appl Phys Lett 100:172906

    Article  CAS  Google Scholar 

  30. Kimura T, Takahashi T (2004) Crystallographic texture development in bismuth sodium titanate prepared by reactive-templated grain growth method. J Am Ceram Soc 87(8):1424–1429

    Article  CAS  Google Scholar 

  31. Sato T, Kimura T (2008) Preparation of {1 1 1}-textured BaTiO3 ceramics by template grain growth method using novel template particles. Ceram Int 34:757–760

    Article  CAS  Google Scholar 

  32. Chang YF, Poterala SF, Yang ZP, Mckinstry ST, Messing GL (2009) 001 textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range. Appl Phys Lett 95:232905

    Article  CAS  Google Scholar 

  33. Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M, Park SE, Cross LE, Shrout TR (1999) Enhanced piezoelectric property of barium titanate single crystals with engineered domain configuration. Jpn J Appl Phys 38(9B):5505–5511

    Article  CAS  Google Scholar 

  34. Takenaka T, Sakata K (1980) Grain orientation and electrical properties of hot-forged Bi4Ti3O12 ceramics. Jpn J Appl Phys 19(1):31–39

    Article  CAS  Google Scholar 

  35. Senz S, Graff A, Blum W, Hesse D (1998) Orientation Relationships of reactively grown Ba6Ti17O40 and Ba2TiSi2O8 on BaTiO3 (001) determined by X-ray diffractometry. J Am Ceram Soc 81(5):1317–1321

    Article  CAS  Google Scholar 

  36. Ye SK, Fuh JYH, Lu L (2012) Structure and electrical properties of 001 textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free piezoelectric ceramics. Appl Phys Lett 100:252906

    Article  CAS  Google Scholar 

  37. Feng G, Song ZC, Chun LX, Hong CL, Sheng TC (2007) Microstructure and piezoelectric properties of textured (Na0.84K0.16)0.5Bi0.5TiO3 lead-free ceramics. J Eur Ceram Soc 27:3453–3458

    Article  CAS  Google Scholar 

  38. Mackenzie JD, Bescher EP (2007) Chemical routes in the synthesis of nanomaterials using the sol-gel process. Acc Chem Res 40:810–818

    Article  CAS  Google Scholar 

  39. Safi R, Shokrollahi H (2012) Physics, chemistry and synthesis methods of nanostructured bismuth ferrite (BiFeO3) as a ferroelectro-magnetic material. Prog Solid State Ch 40:6–15

    Article  CAS  Google Scholar 

  40. Lu SZ, Qi XD (2014) Magnetic and dielectric properties of nanostructured BiFeO3 prepared by sol-gel method. J Am Ceram Soc 97(7):2185–2194

    Article  CAS  Google Scholar 

  41. Chakrabari K, Das K, Sarkar B, De SK (2011) Magnetic and dielectric properties of Eu-doped BiFeO3 nanoparticles by acetic acid-assisted sol-gel method. J Appl Phys 110:103905

    Article  CAS  Google Scholar 

  42. Wei J, Xue DS, Xu Y (2008) Photoabsorption characterization and magnetic property of multiferroic BiFeO3 nanotubes synthesized by a facile sol-gel template process. Scripta Mater 58:45–48

    Article  CAS  Google Scholar 

  43. Guo RP, Fang L, Dong W, Zheng FG, Shen MG (2010) Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J Phys Chem C 114:21390–21396

    Article  CAS  Google Scholar 

  44. Wang C, Hou YD, Ge HY, Zhu MK, Yan H (2009) Crystal structure and orthorhombic-tetragonal phase transition of nanoscale (Li0.06Na0.47K0.47)NbO3. J Eur Ceram Soc 29:2589–2594

    Article  CAS  Google Scholar 

  45. Zhu XH, Yang Y, He K, Zhu JM, Ye S, Zhou SH, Liu ZG (2010) Microwave-hydrothermal synthesis and structural characterization of multiferroic bismuth ferrite nanostructures. Ferroelectrics 409:204–210

    Article  CAS  Google Scholar 

  46. Wu XJ, Chen J, Shi ZQ, Huang H, Liu L, Yu HG, Zou YC, Li GD, Zhao YN (2012) Hydrothermal synthesis and photoluminescence properties of BaZr1-xTixO3 hollow nanospheres. Mater Lett 86:21–24

    Article  CAS  Google Scholar 

  47. Hou YD, Hou L, Zhang TT, Zhu MK, Wang H, Yan H (2007) (Na0.8K0.2)0.5Bi0.5TiO3 nanowires: low-temperature sol-gel-hydrothermal synthesis and densification. J Am Ceram Soc 90(6):1738–1743

    Article  CAS  Google Scholar 

  48. Lu R, Yuan J, Shi HL, Lin B, Wang WZ, Wang DW, Cao MS (2013) Morphology-controlled synthesis and growth mechanism of lead-free bismuth sodium titanate nanostructures via the hydrothermal route. Cryst Eng Comm 15:3984–3991

    Article  CAS  Google Scholar 

  49. Wang YG, Xu G, Ren ZH, Wei X, Weng WJ, Du PY, Sheng G, Han GR (2007) Mineralizer-assisted hydrothermal synthesis and characterization of BiFeO3 nanoparticles. J Am Ceram Soc 90(8):2615–2617

    Article  CAS  Google Scholar 

  50. Cheung MC, Chan HLW, Zhou QF, Choy C (1999) Characterization of barium titanate ceramic nanocomposite films prepared by a sol-gel process. Nanostrct Mater 11(7):837–844

    Article  CAS  Google Scholar 

  51. Wang M, Zuo RZ, Qi SS, Liu LD (2012) Synthesis and characterization of sol–gel derived (Ba, Ca)(Ti, Zr)O3 nanoparticles. J Mater Sci 23:753–757

    Google Scholar 

  52. Yang Y, Wang XH, Sun CK, Li LT (2009) Structure study of single crystal BaTiO3 nanotube arrays produced by the hydrothermal method. Nanotechnology 20:055709

    Article  CAS  Google Scholar 

  53. Xu Y, Yu Q, Li JF (2012) A facile method to fabricate vertically aligned (K, Na)NbO3 lead-free piezoelectric nanorod. J Mater Chem 22:23221–23226

    Article  CAS  Google Scholar 

  54. Wu JG, Fan Z, Xiao DQ, Zhu JG, Wang J (2016) Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog Mater Sci 84:335–402

    Article  CAS  Google Scholar 

  55. Lakshmi BB, Patrissi CJ, Martin CR (1997) Sol-gel template synthesis of semiconductor oxide micro- and nanostructures. Chem Mater 9:2544–2550

    Article  CAS  Google Scholar 

  56. Cernea M, Poli G, Aldica GV, Berbecaru C, Vasile BS, Galassi C (2012) Preparation and properties of nanocrystalline BNT-BTx piezoelectric ceramics by sol-gel and spark plasma sintering. Curr Appl Phys 12:1100–1105

    Article  Google Scholar 

  57. Wang X, Zhang YG, Wu ZB (2010) Magnetic and optical properties of multiferroic bismuth ferrite nanoparticles by tartaric acid-assisted sol-gel strategy. Mater Lett 64:486–488

    Article  CAS  Google Scholar 

  58. Jing XZ, Li YX, Yin QR (2003) Hydrothermal synthesis of Na0.5Bi0.5TiO3 fine powders. Mater Sci Eng B 99:506–510

    Article  CAS  Google Scholar 

  59. Wang Z, Hu YM, Wang W, Zhou D, Wang Y, Gu HS (2013) Electromechanical conversion behavior of K0.5Na0.5NbO3 nanorods synthesized by hydrothermal method. Integr Ferroelectr 142:24–30

    Article  CAS  Google Scholar 

  60. Vasco E, Magrez A, Forro L, Setter N (2005) Growth kinetics of one-dimensional KNbO3 nanostructures by hydrothermal processing routes. J Phys Chem B 109:14331–14334

    Article  CAS  Google Scholar 

  61. Ding QP, Yuan YP, Xiong X, Li RP, Huang HB, Li ZS, Yu T, Zou ZG, Yang SG (2008) Enhanced photocatalytic water splitting properties of KNbO3 nanowires synthesized through hydrothermal method. J Phys Chem C 112:18846–18848

    Article  CAS  Google Scholar 

  62. Muralt P (2000) PZT thin films for microsensors and actuators: where do we stand? IEEE T Ultrason Ferr 47(4):903–915

    Article  CAS  Google Scholar 

  63. Muralt P (2000) Ferroelectric thin films for micro-sensors and actuators: a review. J Micromech Microeng 10(2):136

    Article  CAS  Google Scholar 

  64. Kern W (2012) Thin film processes II. New York, Academic, vol 2

    Google Scholar 

  65. Feldman C (1955) Formation of thin films of BaTiO3 by evaporation. Rev Sci Instrum 26(5):463–466

    Article  CAS  Google Scholar 

  66. Kang LS, Kim BY, Seo IT, Seong TG, Kim JS, Sun JW, Paik DS, Hwang I, Park BH, Nahm S (2011) Growth behavior and electrical properties of a (Na0.5K0.5)NbO3 thin film deposited on a Pt/Ti/SiO2/Si substrate using RF magnetron sputtering. J Am Ceram Soc 94(7):1970–1973

    Article  CAS  Google Scholar 

  67. Li T, Wang G, Li K, Sama N, Remiens D, Dong X (2013) Influence of LNO top electrodes on electrical properties of KNN/LNO thin films prepared by RF magnetron sputtering. J Am Ceram Soc 96(3):787–790

    Article  CAS  Google Scholar 

  68. Luo B, Wang D, Duan M, Li S (2013) Orientation-dependent piezoelectric properties in lead-free epitaxial 0.5BaZr0.2Ti0.8O3–0.5Ba0.7Ca0.3TiO3 thin films. Appl Phys Lett 103(12):122903

    Article  CAS  Google Scholar 

  69. Wu J, Wang J (2009) Effects of SrRuO3 buffer layer thickness on multiferroic (Bi0.90La0.10)(Fe0.95Mn0.05)O3 thin films. J Appl Phys 106(5):054115

    Article  CAS  Google Scholar 

  70. Wasa K, Kitabatake M, Adachi H (2004) Thin film materials technology: sputtering of control compound materials. Springer Science & Business Media

    Google Scholar 

  71. Ding R, Wang D, Chu D, Li S (2013) Crystallographic orientation dependence on electrical properties of (Bi, Na)TiO3-based thin films. J Am Ceram Soc 96(11):3530–3535

    Article  CAS  Google Scholar 

  72. Yun KY, Noda M, Okuyama M, Saeki H, Tabata H, Saito K (2004) Structural and multiferroic properties of BiFeO3 thin films at room temperature. J Appl Phys 96(6):3399–3403

    Article  CAS  Google Scholar 

  73. Wang D, Chan N, Zheng R, Kong C, Lin D, Dai J, Chan HL, Li S (2011) Multiferroism in orientational engineered (La, Mn) co-substituted BiFeO3 thin films. J Appl Phys 109(11):114105

    Article  CAS  Google Scholar 

  74. Maki H, Noguchi Y, Kutsuna K, Matsuo H, Kitanaka Y, Miyayama M (2016) Crystal structure and polarization hysteresis properties of ferroelectric BaTiO3 thin-film capacitors on (Ba,Sr)TiO3-buffered substrates. Jpn J Appl Phys 55(10S):10TA03

    Google Scholar 

  75. Jin C, Wang F, Yao Q, Tang Y, Wang T, Shi W (2013) Enhanced ferroelectric and dielectric properties in (La0.7Ca0.3)MnO3-buffered (Bi0.5Na0.5)TiO3-based lead-free thin film by pulsed laser deposition. J Alloys Compd 553:142–145

    Article  CAS  Google Scholar 

  76. Abazari M, Akdoğan E, Safari A (2008) Effect of manganese doping on remnant polarization and leakage current in (K0.44Na0.52Li0.04)(Nb0.84Ta0.10Sb0.06)O3 epitaxial thin films on SrTiO3. Appl Phys Lett 92(21):212903

    Article  CAS  Google Scholar 

  77. Bhardwaj C, Daniel B, Kaur D (2013) Pulsed laser deposition and characterization of highly tunable (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 thin films grown on LaNiO3/Si substrate. J Phys Chem Solid 74(1):94–100

    Google Scholar 

  78. Yamazoe S, Miyoshi Y, Hattori T, Adachi H, Wada T (2010) Ferroelectric properties of (Na0.5K0.5)NbO3-BaZrO3-(Bi0.5Li0.5)TiO3 thin films deposited on Pt/(001) MgO substrate by pulsed laser deposition. Jpn J Appl Phys 49(9S):09MA06

    Google Scholar 

  79. Yan F, Zhu T, Lai M, Lu L (2010) Enhanced multiferroic properties and domain structure of La-doped BiFeO3 thin films. Scripta Mater 63(7):780–783

    Article  CAS  Google Scholar 

  80. Yu T, Kwok K, Chan H (2007) Preparation and properties of sol-gel-derived Bi0.5Na0.5TiO3 lead-free ferroelectric thin film. Thin Solid Films 515(7):3563–3566

    Article  CAS  Google Scholar 

  81. Ahn C, Lee S, Lee H, Ullah A, Bae J, Jeong E, Choi J, Park B, Kim I (2009) The effect of K and Na excess on the ferroelectric and piezoelectric properties of K0.5Na0.5NbO3 thin films. J Phys D Appl Phys 42(21):215304

    Article  CAS  Google Scholar 

  82. Sakamoto W, Makino N, Lee BY, Iijima T, Moriya M, Yogo T (2013) Influence of volatile element composition and Mn doping on the electrical properties of lead-free piezoelectric (Bi0.5Na0.5)TiO3 thin films. Sens Actuat A-Phys 200:60–67

    Article  CAS  Google Scholar 

  83. Zhan K, Su M, Han H, Xie S, Zhu Y, Wang D, Cheng H, Wang X (2016) Effect of annealing temperature on piezoelectric and mechanical properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3-BaTiO3 thin films. Ceram Int 42(1):1627–1632

    Article  CAS  Google Scholar 

  84. Kang G, Yao K, Wang J (2012) (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ferroelectric thin films prepared from chemical solutions. J Am Ceram Soc 95(3):986–991

    CAS  Google Scholar 

  85. Simões A, Gonzalez A, Cavalcante L, Riccardi C, Longo E, Varela JA (2007) Ferroelectric characteristics of BiFeO3 thin films prepared via a simple chemical solution deposition. J Appl Phys 101(7):074108

    Article  CAS  Google Scholar 

  86. Kim JK, Kim SS, Kim WJ, Bhalla AS, Guo R (2006) Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition. Appl Phys Lett 88(13):132901

    Article  CAS  Google Scholar 

  87. Singh S, Ishiwara H, Maruyama K (2006) Room temperature ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Pt electrodes using chemical solution deposition. Appl Phys Lett 88(26):262908

    Article  CAS  Google Scholar 

  88. Wang L, Ren W, Yao K, Shi P, Wu X, Yao X (2012) Effects of thickness on structures and electrical properties of K0.5Na0.5NbO3 thick films derived from polyvinylpyrrolidone-modified chemical solution. Ceram Int 38:S291–S294

    Article  CAS  Google Scholar 

  89. Yu Q, Li JF, Sun W, Zhou Z, Xu Y, Xie ZK, Lai FP, Wang QM (2013) Electrical properties of K0.5Na0.5NbO3 thin films grown on Nb:SrTiO3 single-crystalline substrates with different crystallographic orientations. J Appl Phys 113(2):024101

    Article  CAS  Google Scholar 

  90. Li W, Li P, Zeng H, Hao J, Zhai J (2014) Orientation dependence on piezoelectric properties of Bi0.5Na0.5TiO3-BaTiO3-SrTiO3 epitaxial thin films. Appl Phys Lett 104(17):172903

    Article  CAS  Google Scholar 

  91. Singh SK, Sato K, Maruyama K, Ishiwara H (2006) Cr-doping effects to electrical properties of BiFeO3 thin films formed by chemical solution deposition. Jpn J Appl Phys 45(10L):L1087

    Article  CAS  Google Scholar 

  92. Fan S, Xie X, Zhang F, Guo X, Yang S, Zhang L (2016) Improved leakage and ferroelectric properties of Sr doped BiFe0.95Mn0.05O3 thin films. J Mater Sci-Mater El 27(7):6854–6858

    Google Scholar 

  93. Yang C, Wu W, Yang F, Wu H, Zhang X (2012) Dielectric and ferroelectric properties of A-site non-stoichiometric (Bi0.5Na0.5)TiO3-based thin films. Mater Lett 66(1):86–88

    Article  CAS  Google Scholar 

  94. Peng J, Zheng X, Gong Y, Zhan K, Dai Z (2014) Effects of Annealing Temperature on the Electric Properties of 0.94(Bi0.5Na0.5)TiO3-0.06 BaTiO3 Ferroelectric Thin Film. J Electron Mater 43(3):724

    Google Scholar 

  95. Yang C, Han J, Cheng X, Yin X, Wang Z, Zhao M, Wang C (2005) Dielectric and ferroelectric properties of (Na0.8K0.2)0.5Bi0.5TiO3 thin films prepared by metal organic solution deposition. Appl Phys Lett 87(19):192901

    Article  CAS  Google Scholar 

  96. Zheng X, Dai S, Feng X, Zhang T, Zhang D, Gong Y, Chen Y, He L (2010) Structural and electrical properties of (Na0.85K0.15)0.5Bi0.5TiO3 thin films deposited on LaNiO3 and Pt bottom electrodes. Appl Surf Sci 256(10):3316–3320

    Article  CAS  Google Scholar 

  97. Lin D, Li Z, Zhang S, Xu Z, Yao X (2009) Dielectric/piezoelectric properties and temperature dependence of domain structure evolution in lead free single crystal. Solid State Commun 149(39–40):1646–1649

    Article  CAS  Google Scholar 

  98. Gupta S, Priya S (2011) Ferroelectric properties and dynamic scaling of ⟨100⟩ oriented (K0.5Na0.5)NbO3 single crystals. Appl Phys Lett 98(24):242906

    Article  CAS  Google Scholar 

  99. Uršič H, Benčan A, Škarabot M, Godec M, Kosec M (2010) Dielectric, ferroelectric, piezoelectric, and electrostrictive properties of K0.5Na0.5NbO3 single crystals. J Appl Phys 107(3):33705

    Article  CAS  Google Scholar 

  100. Tian H, Hu C, Meng X, Tan P, Zhou Z, Li J, Yang B (2015) Top-seeded solution growth and properties of K1-xNaxNbO3 crystals. Cryst Growth Des 15(3):1180–1185

    Article  CAS  Google Scholar 

  101. Hao D, Zhao X, Zhang H, Chao C, Li X, Di L, Bo R, Jie J, Luo H (2014) Orientation dependence of electrical properties of large-sized sodium potassium niobate lead-free single crystals. CrystEngComm 16(13):2760–2765

    Article  Google Scholar 

  102. Tian H, Hu C, Meng X, Zhou Z, Shi G (2015) Dielectric, piezoelectric, and elastic properties of K0.8Na0.2NbO3 single crystals. J Mater Chem C 3(37):9609–9614

    Google Scholar 

  103. Hu C, Tian H, Meng X, Shi G, Cao W, Zhou Z (2017) High-quality K0.47Na0.53NbO3 single crystal toward high performance transducer. RSC Adv 7(12):7003–7007

    Google Scholar 

  104. Lin D, Li Z, Zhang S, Xu Z, Yao X (2010) Influence of MnO2 Doping on the dielectric and piezoelectric properties and the domain structure in (K0.5Na0.5)NbO3 single crystals. J Am Ceram Soc 93(4):941–944

    Article  CAS  Google Scholar 

  105. Lin D, Zhang S, Cai C, Liu W (2015) Domain size engineering in 0.5%MnO2 (K0.5Na0.5)NbO3 lead free piezoelectric crystals. J Appl Phys 117(7):74103

    Article  CAS  Google Scholar 

  106. Inagaki Y, Kakimoto K, Kagomiya I (2010) Crystal growth and ferroelectric property of Na0.5K0.5NbO3 and Mn-doped Na0.5K0.5NbO3 crystals grown by floating zone method. J Eur Ceram Soc 30(2):301–306

    Article  CAS  Google Scholar 

  107. Kizaki Y, Noguchi Y, Miyayama M (2006) Defect control for low leakage current in K0.5Na0.5NbO3 single crystals. Appl Phys Lett 89(14):142910

    Article  CAS  Google Scholar 

  108. Inagaki Y, Kakimoto K (2008) Dielectric and piezoelectric properties of Mn-doped Na0.5K0.5NbO3 single crystals grown by flux method. Appl Phys Express 1(6):61602

    Google Scholar 

  109. Xu G, Yang D, Chen K, Payne DA, Carroll JF (2010) Growth, domain dynamics and piezoelectric properties of some lead-free ferroelectric crystals. J Electroceram 24(3):226–230

    Article  CAS  Google Scholar 

  110. Yamamoto K, Suzuki M, Noguchi Y, Miyayama M (2008) High-performance Bi0.5Na0.5TiO3 single crystals grown by high-oxygen-pressure flux method. Jpn J Appl Phys 47(9):7623–7629

    Article  CAS  Google Scholar 

  111. Suzuki M, Morishita A, Kitanaka Y, Noguchi Y, Miyayama M (2010) Polarization and piezoelectric properties of high performance bismuth sodium titanate single crystals grown by high-oxygen-pressure flux method. Jpn J Appl Phys 49(9):9M

    Google Scholar 

  112. Ge W, Liu H, Zhao X, Li X, Pan X, Lin D, Xu H, Jiang X, Luo H (2009) Orientation dependence of electrical properties of 0.96Na0.5Bi0.5TiO3-0.04BaTiO3 lead-free piezoelectric single crystal. Appl Phys A 95(3):761–767

    Article  CAS  Google Scholar 

  113. Moon K, Rout D, Lee H, Kang SL (2011) Solid state growth of Na1/2Bi1/2TiO3-BaTiO3 single crystals and their enhanced piezoelectric properties. J Cryst Growth 317(1):28–31

    Article  CAS  Google Scholar 

  114. Zhang Q, Zhang Y, Wang F, Wang Y, Lin D, Zhao X, Luo H, Ge W, Viehland D (2009) Enhanced piezoelectric and ferroelectric properties in Mn-doped Na0.5Bi0.5TiO3-BaTiO3 single crystals. Appl Phys Lett 95(10):102904

    Article  CAS  Google Scholar 

  115. Onozuka H, Kitanaka Y, Noguchi Y, Miyayama M (2013) Crystal Growth and characterization of (Bi0.5Na0.5)TiO3-BaTiO3 single crystals obtained by the top-seeded solution growth method under high-pressure oxygen atmosphere. Key Eng Mater 566(9):7N–9N

    Google Scholar 

  116. Zhang H, Chen C, Zhao X, Deng H, Ren B, Li X, Luo H, Li S (2015) Structure and electrical properties of Na1/2Bi1/2TiO3-xK1/2Bi1/2TiO3 lead-free ferroelectric single crystals. Solid State Commun 201:125–129

    Article  CAS  Google Scholar 

  117. Sun R, Wang J, Wang F, Feng T, Kong F, Liu X, Li Y, Luo H (2016) Growth and electrical properties of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 lead-free single crystals by the TSSG method. Ceram Int 42(13):14557–14564

    Article  CAS  Google Scholar 

  118. Chen C, Zhang H, Zhao X, Deng H, Li L, Ren B, Lin D, Li X, Luo H, Chen Z, Su J (2014) Structure, electrical, and optical properties of (Na1/2Bi1/2)TiO3-1.5at.%Bi(Zn1/2Ti1/2)O3 lead-free single crystal grown by a TSSG technique. J Am Ceram Soc 97(6):1861–1865

    Article  CAS  Google Scholar 

  119. Lebeugle D, Colson D, Forget A, Viret M, Bonville P, Marucco J, Fusil S (2007) Room temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys Rev B 76:24116

    Article  CAS  Google Scholar 

  120. Lebeugle D, Colson D, Forget A, Viret M (2007) Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl Phys Lett 91(2):22907

    Article  CAS  Google Scholar 

  121. Chishima Y, Noguchi Y, Kitanaka Y, Miyayama M (2010) Defect control for polarization switching in BiFeO3 single crystals. IEEE Trans Ultrason Ferroelectr Freq Control 57(10):2233–2236

    Article  Google Scholar 

  122. Lu J, Qiao LJ, Fu PZ, Wu YC (2011) Phase equilibrium of Bi2O3-Fe2O3 pseudo-binary system and growth of BiFeO3 single crystal. J Cryst Growth 318(1):936–941

    Article  CAS  Google Scholar 

  123. Ito T, Ushiyama T, Yanagisawa Y, Kumai R, Tomioka Y (2011) Growth of highly insulating bulk single crystals of multiferroic BiFeO3 and their inherent internal strains in the domain-switching process. Cryst Growth Des 11(11):5139–5143

    Article  CAS  Google Scholar 

  124. Rafiq MA, Costa ME, Vilarinho PM (2016) Pairing high piezoelectric coefficients (d33), with high curie temperature (TC) in lead-free (K, Na)NbO3. ACS Appl Mater Inter 8(49):33755–33764

    Article  CAS  Google Scholar 

  125. Yang J, Zhang F, Yang Q, Liu Z, Li Y, Liu Y, Zhang Q (2016) Large piezoelectric properties in KNN-based lead-free single crystals grown by a seed-free solid-state crystal growth method. Appl Phys Lett 108(18):182904

    Article  CAS  Google Scholar 

  126. Zheng L, Huo X, Wang R, Wang J, Jiang W, Cao W (2013) Large size lead-free (Na, K)(Nb, Ta)O3 piezoelectric single crystal: growth and full tensor properties. CrystEngComm 15(38):7718–7722

    Article  CAS  Google Scholar 

  127. Tian H, Meng X, Hu C, Tan P, Cao X, Shi G, Zhou Z, Zhang R (2016) Origin of giant piezoelectric effect in lead-free K1-xNaxTa1-yNbyO3 single crystals. Sci Rep 6:25637

    Article  CAS  Google Scholar 

  128. Huo X, Zheng L, Zhang S, Zhang R, Liu G, Wang R, Yang B, Cao W, Shrout TR (2014) Growth and properties of Li, Ta modified (K, Na)NbO3 lead-free piezoelectric single crystals. Phys Status solidi-R 8(1):86–90

    Article  CAS  Google Scholar 

  129. Huo X, Zheng L, Zhang R, Wang R, Wang J, Sang S, Wang Y, Yang B, Cao W (2014) High quality lead-free (Li, Ta) modified (K, Na)NbO3 single crystal and its complete set of elastic, dielectric and piezoelectric coefficients with macroscopic 4 mm symmetry. CrystEngComm 16(42):9828–9833

    Article  CAS  Google Scholar 

  130. Huo X, Zhang R, Zheng L, Zhang S, Wang R, Wang J, Sang S, Yang B, Cao W (2015) (K, Na, Li)(Nb, Ta)O3: Mn lead-free single crystal with high piezoelectric properties. J Am Ceram Soc 98(6):1829–1835

    Article  CAS  Google Scholar 

  131. Chen C, Jiang X, Li Y, Wang F, Zhang Q, Luo H (2010) Growth and electrical properties of Na1/2Bi1/2TiO3-BaTiO3 lead-free single crystal with morphotropic phase boundary composition. J Appl Phys 108(12):124106

    Article  CAS  Google Scholar 

  132. Chen C, Chen P, Tu C (2014) Polar nano regions and dielectric properties in high-strain lead-free piezoelectric single crystals. J Appl Phys 115(1):14105

    Article  CAS  Google Scholar 

  133. Zhang H, Chen C, Deng H, Ren B, Zhao X, Lin D, Li X, Luo H (2014) Ultrahigh ferroelectric response in Fe modified 0.95(Na1/2Bi1/2)TiO3-0.05BaTiO3 single crystals. J Mater Chem C 2(47):10124–10128

    Google Scholar 

  134. Ge W, Luo C, Zhang Q, Devreugd CP, Ren Y, Li J, Luo H, Viehland D (2012) Ultrahigh electromechanical response in (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 single-crystals via polarization extension. J Appl Phys 111(9):93508

    Article  CAS  Google Scholar 

  135. Park J, Lee H, Kang SL (2014) Solid-state conversion of (Na1/2 Bi1/2)TiO3-BaTiO3-(K1/2Na1/2)NbO3 single crystals and their piezoelectric properties. Appl Phys Lett 104(22):222910

    Article  CAS  Google Scholar 

  136. Ko S, Park J, Kim I, Won S, Chung S, Kang SL (2017) Improved solid-state conversion and piezoelectric properties of 90Na1/2Bi1/2TiO3-5BaTiO3 -5K1/2Na1/2 NbO3 single crystals. J Eur Ceram Soc 37(1):407–411

    Article  CAS  Google Scholar 

  137. Chen C, Zhao X, Wang Y, Zhang H, Deng H, Li X, Jiang X, Jiang X, Luo H (2016) Giant strain and electric-field-induced phase transition in lead-free (Na0.5Bi0.5)TiO3-BaTiO3-(K0.5Na0.5)NbO3 single crystal. Appl Phys Lett 108(2):22903

    Article  CAS  Google Scholar 

  138. Wada S (2008) Domain wall engineering in piezoelectric crystals with engineered domain configuration: Handb Adv Dielectr Piezoelectric Ferroelectr Mater 266–303

    Google Scholar 

  139. Yako K, Kakemoto H, Tsurumi T, Wada S (2005) Domain size dependence of d33 piezoelectric properties for barium titanate single crystals with engineered domain configurations. Mater Sci Eng B 120(1–3):181–185

    Article  CAS  Google Scholar 

  140. Yako K (2006) Domain wall engineering in barium titanate single crystals for enhanced piezoelectric properties. Ferroelectrics 334(1):17–27

    Article  CAS  Google Scholar 

  141. Chu R, Xu Z, Li G, Zeng H, Yu H, Luo H, Yin Q (2005) Ultrahigh piezoelectric response perpendicular to special cleavage plane in BaTiO3 single crystals. Appl Phys Lett 86(1):12905

    Article  CAS  Google Scholar 

  142. Ren X (2004) Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat Mater 3(2):91–94

    Article  CAS  Google Scholar 

  143. Zhang LX, Ren X (2005) In situ observation of reversible domain switching in aged Mn-doped BaTiO3 single crystals. Phys Rev B 71(17):4108

    Article  CAS  Google Scholar 

  144. Zhang L, Ren X (2006) Aging behavior in single-domain Mn-doped BaTiO3 crystals: implication for a unified microscopic explanation of ferroelectric aging. Phys Rev B 73(9):094121

    Article  CAS  Google Scholar 

  145. Warren BE (1969) X-ray diffraction. Courier Corporation

    Google Scholar 

  146. Maeder MD, Damjanovic D, Setter N (2004) Lead free piezoelectric materials. J Electroceram 13(1):385–392

    Article  CAS  Google Scholar 

  147. Wu J, Xiao D, Zhu J (2015) Potassium-sodium niobate lead-free piezoelectric ceramics: recent advances and perspectives. J Mater Sci-Mater El 26(12):9297–9308

    Article  CAS  Google Scholar 

  148. Benčan A, Tchernychova E, Godec M, Fisher J, Kosec M (2009) Compositional and structural study of a (K0.5Na0.5)NbO3 single crystal prepared by solid state crystal growth. Microsc Microanal 15(05):435–440

    Article  CAS  Google Scholar 

  149. Brajesh K, Abebe M, Ranjan R (2016) Structural transformations in morphotropic-phase-boundary composition of the lead-free piezoelectric system Ba(Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3. Phys Rev B 94(10):104108

    Article  CAS  Google Scholar 

  150. Brajesh K, Tanwar K, Abebe M, Ranjan R (2015) Relaxor ferroelectricity and electric-field-driven structural transformation in the giant lead-free piezoelectric (Ba, Ca)(Ti, Zr)O3. Phys Rev B 92(22):224112

    Article  CAS  Google Scholar 

  151. Fan L, Chen J, Ren Y, Pan Z, Zhang L, Xing X (2016) Unique piezoelectric properties of the monoclinic phase in Pb(Zr, Ti)O3 ceramics: large lattice strain and negligible domain switching. Phys Rev Lett 116(2):027601

    Article  CAS  Google Scholar 

  152. Noheda B, Cox D, Shirane G, Gonzalo J, Cross L, Park S (1999) A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution. Appl Phys Lett 74(14):2059–2061

    Article  CAS  Google Scholar 

  153. Guo R, Cross L, Park S, Noheda B, Cox D, Shirane G (2000) Origin of the high piezoelectric response in PbZr1-xTixO3. Phys Rev Lett 84(23):5423

    Article  CAS  Google Scholar 

  154. Noheda B, Gonzalo J, Cross L, Guo R, Park SE, Cox D, Shirane G (2000) Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys Rev B 61(13):8687

    Article  CAS  Google Scholar 

  155. Noheda B, Cox D, Shirane G, Park SE, Cross L, Zhong Z (2001) Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZn1/3Nb2/3O3-8%PbTiO3. Phys Rev Lett 86(17):3891

    Article  CAS  Google Scholar 

  156. Ye ZG, Noheda B, Dong M, Cox D, Shirane G (2001) Monoclinic phase in the relaxor-based piezoelectric/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Phys Rev B 64(18):184114

    Article  CAS  Google Scholar 

  157. Yamada H, Matsuoka T, Kozuka H, Yamazaki M, Ohbayashi K, Ida T (2016) Crystal structure and phase transition behavior in (K1-xNax)NbO3-based lead-free piezoelectric ceramic over a wide range of temperatures. J Appl Phys 120(21):214102

    Article  CAS  Google Scholar 

  158. Cox D, Noheda B, Shirane G, Uesu Y, Fujishiro K, Yamada Y (2001) Universal phase diagram for high-piezoelectric perovskite systems. Appl Phys Lett 79(3):400–402

    Article  CAS  Google Scholar 

  159. Fu J, Zuo R, Wu S, Jiang J, Li L, Yang T, Wang X, Li L (2012) Electric field induced intermediate phase and polarization rotation path in alkaline niobate based piezoceramics close to the rhombohedral and tetragonal phase boundary. Appl Phys Lett 100(12):122902

    Article  CAS  Google Scholar 

  160. Sinha S, Sirota EB, Garoff S, Stanley H (1988) X-ray and neutron scattering from rough surfaces. Phys Rev B 38(4):2297

    Article  CAS  Google Scholar 

  161. Uesu Y, Matsuda M, Yamada Y, Fujishiro K, Cox DE, Noheda B, Shirane G (2002) Symmetry of high-piezoelectric Pb-based complex perovskites at the morphotropic phase boundary: I. neutron diffraction study on Pb(Zn1/3Nb2/3)O3-9%PbTiO3. J Phys Soc Jpn 71(3):960-965

    Google Scholar 

  162. Ohwada K, Hirota K, Rehrig PW, Fujii Y, Shirane G (2003) Neutron diffraction study of field-cooling effects on the relaxor ferroelectric Pb[(Zn1/3Nb2/3)0.92Ti0.08]O3. Phys Rev B 67(9):094111

    Article  CAS  Google Scholar 

  163. Bai F, Wang N, Li J, Viehland D, Gehring PM, Xu G, Shirane G (2004) X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7Pb(Mg1/3Nb2/3)-0.3PbTiO3 crystal. J Appl Phys 96(3):1620–1627

    Article  CAS  Google Scholar 

  164. Singh AK, Pandey D, Zaharko O (2003) Confirmation of MB-type monoclinic phase in Pb[(Mg1/3Nb2/3)0.71Ti0.29]O3: a powder neutron diffraction study. Phys Rev B 68(17):172103

    Article  CAS  Google Scholar 

  165. Maurya D, Pramanick A, An K, Priya S (2012) Enhanced piezoelectricity and nature of electric-field induced structural phase transformation in textured lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3 ceramics. Appl Phys Lett 100(17):172906

    Article  CAS  Google Scholar 

  166. Kalyani AK, Krishnan H, Sen A, Senyshyn A, Ranjan R (2015) Polarization switching and high piezoelectric response in Sn-modified BaTiO3. Phys Rev B 91(2):024101

    Article  CAS  Google Scholar 

  167. Williams DB, Carter CB (1996) The transmission electron microscope. In: Transmission electron microscopy. Springer, Berlin, pp 3–17

    Google Scholar 

  168. Reaney IM, Damjanovic D (1996) Crystal structure and domain-wall contributions to the piezoelectric properties of strontium bismuth titanate ceramics. J Appl Phys 80(7):4223–4225

    Article  CAS  Google Scholar 

  169. Tan X, Xu Z, Shang J, Han P (2000) Direct observations of electric field-induced domain boundary cracking in <001> oriented piezoelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal. Appl Phys Lett 77(10):1529–1531

    Article  CAS  Google Scholar 

  170. Schierholz R, Fuess H (2011) Symmetry of domains in morphotropic PbZr1-xTixO3 ceramics. Phys Rev B 84(6):064122

    Article  CAS  Google Scholar 

  171. Gao J, Xue D, Wang Y, Wang D, Zhang L, Wu H, Guo S, Bao H, Zhou C, Liu W (2011) Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics. Appl Phys Lett 99(9):092901

    Article  CAS  Google Scholar 

  172. Gao J, Zhang L, Xue D, Kimoto T, Song M, Zhong L, Ren X (2014) Symmetry determination on Pb-free piezoceramic 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 using convergent beam electron diffraction method. J Appl Phys 115(5):054108

    Article  CAS  Google Scholar 

  173. Lu S, Xu Z, Su S, Zuo R (2014) Temperature driven nano-domain evolution in lead-free Ba(Zr0.2Ti0.8)O3-50(Ba0.7Ca0.3)TiO3 piezoceramics. Appl Phys Lett 105(3):032903

    Article  CAS  Google Scholar 

  174. Xu K, Li J, Lv X, Wu J, Zhang X, Xiao D, Zhu J (2016) Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv Mater 28(38):8519–8523

    Article  CAS  Google Scholar 

  175. Wu B, Wu H, Wu J, Xiao D, Zhu J, Pennycook SJ (2016) Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J Am Chem Soc 138(47):15459–15464

    Article  CAS  Google Scholar 

  176. Zheng T, Yuan Y, Lv X, Li Q, Men T, Zhao C, Xiao D, Wu J, Wang K, Li JF (2017) Structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energ Environ Sci 10(2):528–537

    Article  CAS  Google Scholar 

  177. Ma C, Tan X, Dul’Kin E, Roth M (2010) Domain structure-dielectric property relationship in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Appl Phys 108(10):104105

    Article  CAS  Google Scholar 

  178. Liu X, Tan X (2016) Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics. J Appl Phys 120(3):034102

    Article  CAS  Google Scholar 

  179. Liu X, Tan X (2016) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28(3):574–578

    Article  CAS  Google Scholar 

  180. Souza FA, Lima K, Ayala A, Guedes I, Freire P, Mendes FJ, Araújo E, Eiras J (2000) Monoclinic phase of PbZr0.52Ti0.48O3 ceramics: Raman and phenomenological thermodynamic studies. Phys Rev B 61(21):14283

    Article  Google Scholar 

  181. Lima K, Souza FA, Ayala A, Mendes FJ, Freire P, Melo F, Araújo E, Eiras J (2001) Raman study of morphotropic phase boundary in PbZr1-xTixO3 at low temperatures. Phys Rev B 63(18):184105

    Article  CAS  Google Scholar 

  182. Souza FA, Lima K, Ayala A, Guedes I, Freire P, Melo F, Mendes FJ, Araujo E, Eiras J (2002) Raman scattering study of the PbZr1-xTixO3 system: Rhombohedral-monoclinic-tetragonal phase transitions. Phys Rev B 66(13):132107

    Article  CAS  Google Scholar 

  183. Dai Y, Zhang X, Zhou G (2007) Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3 ceramics. Appl Phys Lett 90(26):262903

    Article  CAS  Google Scholar 

  184. Rubio-Marcos F, Banares M, Romero J, Fernandez J (2011) Correlation between the piezoelectric properties and the structure of lead-free KNN-modified ceramics, studied by Raman spectroscopy. J Raman Spectrosc 42(4):639–643

    Article  CAS  Google Scholar 

  185. Schütz D, Deluca M, Krauss W, Feteira A, Jackson T, Reichmann K (2012) Lone-pair-induced covalency as the cause of temperature-and field-induced instabilities in bismuth sodium titanate. Adv Funct Mater 22(11):2285–2294

    Article  CAS  Google Scholar 

  186. Araújo E, Yukimitu K, Moraes JCS, Pelaio L, Eiras J (2002) Monoclinic-tetragonal phase transition in Pb (Zr1-xTix)O3 studied by infrared spectroscopy. J Phys Condens Mat 14(20):5195

    Article  Google Scholar 

  187. Guarany C, Pelaio L, Araújo E, Yukimitu K, Moraes JCS, Eiras J (2003) Infrared studies of the monoclinic-tetragonal phase transition in Pb(Zr, Ti)O3 ceramics. J Phys Condens Mat 15(27):4851

    Article  CAS  Google Scholar 

  188. Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N, Stephenson G (2006) Ferroelectric thin films: review of materials, properties, and applications. J Appl Phys 100(5):051606

    Article  CAS  Google Scholar 

  189. Zhang W, Bhattacharya K (2005) A computational model of ferroelectric domains. Part I: model formulation and domain switching. Acta Mater 53(1):185–198

    Article  CAS  Google Scholar 

  190. Soergel E (2005) Visualization of ferroelectric domains in bulk single crystals. Appl Phys B 81(6):729–751

    Article  CAS  Google Scholar 

  191. Hooton JA, Merz WJ (1955) Etch patterns and ferroelectric domains in BaTiO3 single crystals. Phys Rev 98(2):409

    Article  CAS  Google Scholar 

  192. Nassau K, Levinstein H, Loiacono G (1965) The domain structure and etching of ferroelectric lithium niobate. Appl Phys Lett 6(11):228–229

    Article  CAS  Google Scholar 

  193. Arlt G, Sasko P (1980) Domain configuration and equilibrium size of domains in BaTiO3 ceramics. J Appl Phys 51(9):4956–4960

    Article  CAS  Google Scholar 

  194. Hatanaka T, Hasegawa H (1992) Observation of domain structures in tetragonal Pb(ZrxTi1-x)O3 single crystals by chemical etching method. Jpn J Appl Phys 31(9S):3245

    Article  CAS  Google Scholar 

  195. Qin Y, Zhang J, Gao Y, Tan Y, Wang C (2013) Study of domain structure of poled (K, Na)NbO3 ceramics. J Appl Phys 113(20):204107

    Article  CAS  Google Scholar 

  196. Zhang J, Gao Y, Qin Y, Yao W, Tian X (2014) Comparative study of two (K, Na)NbO3-based piezoelectric ceramics. J Appl Phys 116(10):104106

    Article  CAS  Google Scholar 

  197. Zwicker B, Scherrer P (1944) Elektrooptische Eigenschaften der seignette-elektrischen Kristalle KH2PO4 und KD2PO4. Helv Phys Acta 17:346

    CAS  Google Scholar 

  198. Merz WJ (1954) Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys Rev 95(3):690

    Article  CAS  Google Scholar 

  199. Gopalan V, Mitchell TE (1999) In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy. J Appl Phys 85(4):2304–2311

    Article  CAS  Google Scholar 

  200. Gopalan V, Gerstl SS, Itagi A, Mitchell T, Jia Q, Schlesinger T, Stancil D (1999) Mobility of 180 domain walls in congruent LiTaO3 measured using real-time electro-optic imaging microscopy. J Appl Phys 86(3):1638–1646

    Article  CAS  Google Scholar 

  201. Xu G, Luo H, Xu H, Yin Z (2001) Third ferroelectric phase in PMNT single crystals near the morphotropic phase boundary composition. Phys Rev B 64(2):020102

    Article  CAS  Google Scholar 

  202. Lin D, Zhang S, Li Z, Li F, Xu Z, Wada S, Luo J, Shrout TR (2011) Domain size engineering in tetragonal Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals. J Appl Phys 110(8):084110

    Article  CAS  Google Scholar 

  203. Lin D, Li Z, Zhang S, Xu Z, Yao X (2009) Dielectric/piezoelectric properties and temperature dependence of domain structure evolution in lead free single crystal. Solid State Commun 149(39):1646–1649

    Article  CAS  Google Scholar 

  204. Lin D, Zhang S, Cai C, Liu W (2015) Domain size engineering in 0.5% MnO2-(K0.5Na0.5)NbO3 lead free piezoelectric crystals. J Appl Phys 117(7):074103

    Article  CAS  Google Scholar 

  205. Kalinin SV, Bonnell DA (2002) Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys Rev B 65(12):125408

    Article  CAS  Google Scholar 

  206. http://www.asylumresearch.com/

  207. Shvartsman V, Kholkin A (2004) Domain structure of 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 studied by piezoresponse force microscopy. Phys Rev B 69(1):014102

    Article  CAS  Google Scholar 

  208. McQuaid R, McGilly L, Sharma P, Gruverman A, Gregg J (2011) Mesoscale flux-closure domain formation in single-crystal BaTiO3. Nat Commun 2:404

    Article  CAS  Google Scholar 

  209. Rodriguez BJ, Nemanich R, Kingon A, Gruverman A, Kalinin S, Terabe K, Liu X, Kitamura K (2005) Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy. Appl Phys Lett 86(1):012906

    Article  CAS  Google Scholar 

  210. Wang R, Yang B, Luo Z, Sun E, Sun Y, Xu H, Zhao J, Zheng L, Zhou H, Gao C (2016) Local twin domains and tip-voltage-induced domain switching of monoclinic MC phase in Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 single crystal revealed by piezoresponse force microscopy. Phys Rev B 94(5):054115

    Article  CAS  Google Scholar 

  211. Zhao X, Dai J, Wang J, Chan H, Choy C, Wan X, Luo H (2005) Relaxor ferroelectric characteristics and temperature-dependent domain structure in a (110)-cut (PbMg1/3Nb2/3O3)0.75(PbTiO3)0.25 single crystal. Phys Rev B 72(6):064114

    Article  CAS  Google Scholar 

  212. Zhao X, Dai J, Wang J, Chan H, Choy C, Wan X, Luo H (2005) Domain structure and evolution in (PbMg1/3Nb2/3O3)0.75(PbTiO3)0.25 single crystal studied by temperature-dependent piezoresponse force microscopy. J Appl Phys 97(9):094107

    Article  CAS  Google Scholar 

  213. Wong K, Dai J, Zhao X, Luo H (2007) Time-and temperature-dependent domain evolutions in poled (111)-cut (PbMg1/3Nb2/3O3)0.7(PbTiO3)0.3 single crystal. Appl Phys Lett 90(16):162907

    Article  CAS  Google Scholar 

  214. Yan Y, Zhou JE, Maurya D, Wang YU, Priya S (2016) Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material. Nat Commun 7:13089

    Article  CAS  Google Scholar 

  215. Yao FZ, Wang K, Jo W, Webber KG, Comyn TP, Ding JX, Xu B, Cheng LQ, Zheng MP, Hou YD (2016) Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv Funct Mater 26(8):1217–1224

    Article  CAS  Google Scholar 

  216. Wang K, Yao FZ, Jo W, Gobeljic D, Shvartsman VV, Lupascu DC, Li JF, Rödel J (2013) Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 23(33):4079–4086

    Article  CAS  Google Scholar 

  217. Yao FZ, Wang K, Cheng LQ, Zhang X, Zhang W, Zhu F, Li JF (2015) Nanodomain engineered (K, Na)NbO3 lead-free piezoceramics: enhanced thermal and cycling reliabilities. J Am Ceram Soc 98(2):448–454

    Article  CAS  Google Scholar 

  218. Dittmer R, Jo W, Rödel J, Kalinin S, Balke N (2012) Nanoscale insight into lead-free BNT-BT-xKNN. Adv Funct Mater 22(20):4208–4215

    Article  CAS  Google Scholar 

  219. Carter CB, Williams DB (2009) Transmission electron microscopy. Springer, US

    Google Scholar 

  220. Reimer L (2013) Transmission electron microscopy: physics of image formation and microanalysis. Springer, vol 36

    Google Scholar 

  221. Hu YH, Chan HM, Wen ZX, Harmer MP (1986) Scanning electron microscopy and transmission electron microscopy study of ferroelectric domains in doped BaTiO3. J Am Ceram Soc 69(8):594–602

    Article  CAS  Google Scholar 

  222. Randall C, Eitel R, Shrout T, Woodward DI, Reaney I (2003) Transmission electron microscopy investigation of the high temperature BiScO3-PbTiO3 piezoelectric ceramic system. J Appl Phys 93(11):9271–9274

    Article  CAS  Google Scholar 

  223. Cao W, Randall CA (1996) Grain size and domain size relations in bulk ceramic ferroelectric materials. J Phys Chem Solids 57(10):1499–1505

    Article  CAS  Google Scholar 

  224. Hsiang HI, Yen FS (1996) Effect of crystallite size on the ferroelectric domain growth of ultrafine BaTiO3 powders. J Am Ceram Soc 79(4):1053–1060

    Article  CAS  Google Scholar 

  225. Zakhozheva M, Schmitt LA, Acosta M, Jo W, Rödel J, Kleebe HJ (2014) In situ electric field induced domain evolution in Ba(Zr0.2Ti0.8)O3-0.3(Ba0.7Ca0.3)TiO3 ferroelectrics. Appl Phys Lett 105(11):112904

    Article  CAS  Google Scholar 

  226. Okayasu M, Ogawa T, Sasaki Y (2017) In situ TEM observations of microstructural characteristics of lead zirconate titanate piezoelectric ceramic during heating to 1000 C. Ceram Int 43(18):16306–16312

    Article  CAS  Google Scholar 

  227. Acosta M, Schmitt LA, Molina-Luna L, Scherrer MC, Brilz M, Webber KG, Deluca M, Kleebe HJ, Rödel J, Donner W (2015) Core-shell lead-free piezoelectric ceramics: current status and advanced characterization of the Bi1/2Na1/2TiO3-SrTiO3 system. J Am Ceram Soc 98(11):3405–3422

    Article  CAS  Google Scholar 

  228. Nelson CT, Gao P, Jokisaari JR, Heikes C, Adamo C, Melville A, Baek SH, Folkman CM, Winchester B, Gu Y (2011) Domain dynamics during ferroelectric switching. Science 334(6058):968–971

    Article  CAS  Google Scholar 

  229. Guo H, Voas BK, Zhang S, Zhou C, Ren X, Beckman SP, Tan X (2014) Polarization alignment, phase transition, and piezoelectricity development in polycrystalline 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3. Phys Rev B 90(1):014103

    Article  CAS  Google Scholar 

  230. Guo H, Zhou C, Ren X, Tan X (2014) Unique single-domain state in a polycrystalline ferroelectric ceramic. Phys Rev B 89(10):100104

    Article  CAS  Google Scholar 

  231. Kling J, Tan X, Jo W, Kleebe HJ, Fuess H, Rödel J (2010) In situ transmission electron microscopy of electric field-triggered reversible domain formation in Bi-based lead-free piezoceramics. J Am Ceram Soc 93(9):2452–2455

    Article  CAS  Google Scholar 

  232. Gao J, Hu X, Wang Y, Liu Y, Zhang L, Ke X, Zhong L, Zhao H, Ren X (2017) Understanding the mechanism of large dielectric response in Pb-free (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. Acta Mater 125:177–186

    Article  CAS  Google Scholar 

  233. Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35(6):1659–1681

    Article  CAS  Google Scholar 

  234. Ikeda T (1990) Piezoelectricity. Oxford university press

    Google Scholar 

  235. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432(7013):84–87

    Article  CAS  Google Scholar 

  236. Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103(25):257602

    Article  CAS  Google Scholar 

  237. Wang X, Wu J, Xiao D, Zhu J, Cheng X, Zheng T, Zhang B, Lou X, Wang X (2014) Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J Am Chem Soc 136(7):2905–2910

    Article  CAS  Google Scholar 

  238. Lv X, Wu J, Xiao D, Zhu J, Zhang X (2017) Electric field-induced phase transitions and composition-driven nanodomains in rhombohedral-tetragonal potassium-sodium niobate-based ceramics. Acta Mater 140:79–86

    Article  CAS  Google Scholar 

  239. Lv X, Wu J, Yang S, Xiao D, Zhu J (2016) Identification of phase boundaries and electrical properties in ternary potassium-sodium niobate-based ceramics. ACS Appl Mater Interfaces 8(29):18943–18953

    Article  CAS  Google Scholar 

  240. Lv X, Li Z, Wu J, Xi J, Gong M, Xiao D, Zhu J (2016) Enhanced piezoelectric properties in potassium-sodium niobate-based ternary ceramics. Mater Des 109:609–614

    Article  CAS  Google Scholar 

  241. Cain MG (2014) Characterisation of ferroelectric bulk materials and thin films. Springer, vol 2

    Google Scholar 

  242. Huang Z, Zhang Q, Corkovic S, Dorey R, Whatmore RW (2006) Comparative measurements of piezoelectric coefficient of PZT films by berlincourt, interferometer, and vibrometer methods. IEEE T Ultrason Ferr 53(12)

    Google Scholar 

  243. Yao K, Tay FEH (2003) Measurement of longitudinal piezoelectric coefficient of thin films by a laser-scanning vibrometer. IEEE T Ultrason Ferr 50(2):113–116

    Article  Google Scholar 

  244. Wang Y, Yao K, Qin X, Mirshekarloo MS, Liu X, Tay FEH (2017) High piezoelectric performance and phase transition in stressed lead-free (1-x)(K, Na)(Sb, Nb)O3-x(Bi, Na, K)ZrO3 thin films. Adv Electron Mater 3(7):1700033

    Article  CAS  Google Scholar 

  245. Chen W, Wang L, Ren W, Niu G, Zhao J, Zhang N, Liu M, Tian Y, Dong M (2017) Crystalline phase and electrical properties of lead-free piezoelectric KNN-based films with different orientations. J Am Ceram Soc 100:2965–2971

    Article  CAS  Google Scholar 

  246. Lin Q, Wang D, Luo B, Ding R, Lorenzen D, Li S (2015) Composition dependence of ferroelectric and piezoelectric properties of epitaxial (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 thin films prepared by pulsed laser deposition. Appl Surf Sci 331:477–481

    Article  CAS  Google Scholar 

  247. Lee MH, Park JS, Kim MH, Song TK, Kumar S, Kim WJ, Do D, Hwang I, Park BH, Choi KS (2016) Lead-free piezoelectric BiFeO3-BaTiO3 thin film with high Curie temperature. Curr Appl Phys 16(10):1449–1452

    Article  Google Scholar 

  248. Valasek J (1921) Piezo-electric and allied phenomena in Rochelle salt. Phys Rev 17(4):475

    Article  CAS  Google Scholar 

  249. Sawyer CB, Tower C (1930) Rochelle salt as a dielectric. Phys Rev 35(3):269

    Article  CAS  Google Scholar 

  250. Jin L, Li F, Zhang S (2014) Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 97(1):1–27

    Article  CAS  Google Scholar 

  251. Jesse S, Baddorf AP, Kalinin SV, Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl Phys Lett 88(6):062908

    Google Scholar 

  252. Bintachitt P, Trolier-McKinstry S, Seal K, Jesse S, Kalinin SV (2009) Switching spectroscopy piezoresponse force microscopy of polycrystalline capacitor structures. Appl Phys Lett 94(4):042906

    Article  CAS  Google Scholar 

  253. Zhang MH, Wang K, Du YJ, Dai G, Sun W, Li G, Hu D, Thong HC, Zhao C, Xi XQ (2017) High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite. J Am Chem Soc 139(10):3889–3895

    Article  CAS  Google Scholar 

  254. Merz WJ (1953) Double hysteresis loop of BaTiO3 at the curie point. Phys Rev 91(3):513

    Article  CAS  Google Scholar 

  255. Jin L, He Z, Damjanovic D (2009) Nanodomains in Fe+3-doped lead zirconate titanate ceramics at the morphotropic phase boundary do not correlate with high properties. Appl Phys Lett 95(1):012905

    Article  CAS  Google Scholar 

  256. Patel S, Chauhan A, Vaish R (2014) Enhancing electrical energy storage density in anti-ferroelectric ceramics using ferroelastic domain switching. Mater Research Express 1(4):045502

    Article  CAS  Google Scholar 

  257. Zhang G, Zhu D, Zhang X, Zhang L, Yi J, Xie B, Zeng Y, Li Q, Wang Q, Jiang S (2015) High-energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 antiferroelectric ceramics fabricated by the hot-press sintering method. J Am Ceram Soc 98(4):1175–1181

    Article  CAS  Google Scholar 

  258. Peng B, Zhang Q, Li X, Sun T, Fan H, Ke S, Ye M, Wang Y, Lu W, Niu H (2015) Large energy storage density and high thermal stability in a highly textured (111)-oriented Pb0.8Ba0.2ZrO3 relaxor thin film with the coexistence of antiferroelectric and ferroelectric phases. ACS Appl Mater Interfaces 7(24):13512–13517

    Article  CAS  Google Scholar 

  259. Gao F, Dong X, Mao C, Liu W, Zhang H, Yang L, Cao F, Wang G (2011) Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J Am Ceram Soc 94(12):4382–4386

    Article  CAS  Google Scholar 

  260. Shao T, Du H, Ma H, Qu S, Wang J, Wang J, Wei X, Xu Z (2017) Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials. J Mater Chem A 5(2):554–563

    Article  CAS  Google Scholar 

  261. Lou X (2009) Polarization fatigue in ferroelectric thin films and related materials. J Appl Phys 105(2):024101

    Article  CAS  Google Scholar 

  262. Tagantsev A, Stolichnov I, Colla E, Setter N (2001) Polarization fatigue in ferroelectric films: basic experimental findings, phenomenological scenarios, and microscopic features. J Appl Phys 90(3):1387–1402

    Article  CAS  Google Scholar 

  263. Dimos D, Al-Shareef H, Warren W, Tuttle B (1996) Photo-induced changes in the fatigue behavior of SrBi2Ta2O9 and Pb(Zr, Ti)O3 thin films. J Appl Phys 80(3):1682–1687

    Article  CAS  Google Scholar 

  264. Pöykkö S, Chadi D (1999) Dipolar defect model for fatigue in ferroelectric perovskites. Phys Rev Lett 83(6):1231

    Article  Google Scholar 

  265. Scott J, Dawber M (2000) Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics. Appl Phys Lett 76(25):3801–3803

    Article  CAS  Google Scholar 

  266. Larsen P, Dormans G, Taylor D, Van VP (1994) Ferroelectric properties and fatigue of PbZr0.51Ti0.49O3 thin films of varying thickness: Blocking layer model. J Appl Phys 76(4):2405–2413

    Google Scholar 

  267. Lee J, Thio C, Desu SB (1995) Electrode contacts on ferroelectric Pb(ZrxTi1-x)O3 and SrBi2Ta2O9 thin films and their influence on fatigue properties. J Appl Phys 78(8):5073–5078

    Article  CAS  Google Scholar 

  268. Colla E, Taylor D, Tagantsev A, Setter N (1998) Discrimination between bulk and interface scenarios for the suppression of the switchable polarization (fatigue) in Pb(Zr, Ti)O3 thin films capacitors with Pt electrodes. Appl Phys Lett 72(19):2478–2480

    Article  CAS  Google Scholar 

  269. Duiker H, Beale P, Scott J, Paz de Araujo C, Melnick B, Cuchiaro J, McMillan L (1990) Fatigue and switching in ferroelectric memories: theory and experiment. J Appl Phys 68(11):5783–5791

    Article  CAS  Google Scholar 

  270. Shur VY, Rumyantsev E, Nikolaeva E, Shishkin E, Baturin I (2002) Kinetic approach for describing the fatigue effect in ferroelectrics. Phys Solid State 44(11):2145–2150

    Article  CAS  Google Scholar 

  271. Shur VY, Rumyantsev EL, Nikolaeva EV, Shishkin EI, Baturin IS (2001) Kinetic approach to fatigue phenomenon in ferroelectrics. J Appl Phys 90(12):6312–6315

    Article  CAS  Google Scholar 

  272. Khachaturyan K (1995) Mechanical fatigue in thin films induced by piezoelectric strains as a cause of ferroelectric fatigue. J Appl Phys 77(12):6449–6455

    Article  CAS  Google Scholar 

  273. Liu D, Wang C, Zhang H, Li J, Zhao L, Bai C (2001) Domain configuration and interface structure analysis of sol-gel-derived PZT ferroelectric thin films. Surf Interface Anal 32(1):27–31

    Article  CAS  Google Scholar 

  274. Hill MD, White GS, Hwang CS, Lloyd IK (1996) Cyclic damage in lead zirconate titanate. J Am Ceram Soc 79(7):1915–1920

    Article  CAS  Google Scholar 

  275. Lou X, Zhang M, Redfern S, Scott J (2006) Local phase decomposition as a cause of polarization fatigue in ferroelectric thin films. Phys Rev Lett 97(17):177601

    Article  CAS  Google Scholar 

  276. Leontsev SO, Eitel RE (2010) Progress in engineering high strain lead-free piezoelectric ceramics. Sci Technol Adv Mat 11(4):044302

    Article  CAS  Google Scholar 

  277. Hong CH, Kim HP, Choi BY, Han HS, Son JS, Ahn CW, Jo W (2016) Lead-free piezoceramics-where to move on? J Materiom 2(1):1–24

    Article  Google Scholar 

  278. Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82(4):1804–1811

    Article  CAS  Google Scholar 

  279. Li T, Lou X, Ke X, Cheng S, Mi S, Wang X, Shi J, Liu X, Dong G, Fan H (2017) Giant strain with low hysteresis in a-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics. Acta Mater 128:337–344

    Article  CAS  Google Scholar 

  280. Qi H, Zuo R, Fu J, Dou M (2017) Thermally stable electrostrains of morphotropic 0.875NaNbO3-0.1BaTiO3-0.025CaZrO3 lead-free piezoelectric ceramics. Appl Phys Lett 110(11):112903

    Article  CAS  Google Scholar 

  281. Yao FZ, Glaum J, Wang K, Jo W, Rödel J, Li JF (2013) Fatigue-free unipolar strain behavior in CaZrO3 and MnO2 co-modified (K, Na)NbO3-based lead-free piezoceramics. Appl Phys Lett 103(19):192907

    Article  CAS  Google Scholar 

  282. Lv X, Wu J, Zhu J, Xiao D, Zhang X (2017) A new method to improve the electrical properties of KNN-based ceramics: tailoring phase fraction. J Eur Ceram Soc 38(1):85–94

    Article  CAS  Google Scholar 

  283. Damjanovic D, Demartin M (1996) The Rayleigh law in piezoelectric ceramics. J Phys D Appl Phys 29(7):2057

    Article  CAS  Google Scholar 

  284. Damjanovic D (2005) Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J Am Ceram Soc 88(10):2663–2676

    Article  CAS  Google Scholar 

  285. Qin Y, Zhang J, Yao W, Wang C, Zhang S (2015) Domain structure of potassium-sodium niobate ceramics before and after poling. J Am Ceram Soc 98(3):1027–1033

    Article  CAS  Google Scholar 

  286. Eitel R, Shrout T, Randall C (2006) Nonlinear contributions to the dielectric permittivity and converse piezoelectric coefficient in piezoelectric ceramics. J Appl Phys 99(12):124110

    Article  CAS  Google Scholar 

  287. Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: Alternatives for PZT? J Electroceram 19(1):113–126

    Article  CAS  Google Scholar 

  288. Rubio-Marcos F, López-Juárez R, Rojas-Hernandez RE, del Campo A, Razo-Pérez N, Fernandez JF (2015) Lead-free piezoceramics: revealing the role of the rhombohedral-tetragonal phase coexistence in enhancement of the piezoelectric properties. ACS Appl Mater Interfaces 7(41):23080–23088

    Article  CAS  Google Scholar 

  289. Zhang B, Wu J, Cheng X, Wang X, Xiao D, Zhu J, Wang X, Lou X (2013) Lead-free piezoelectrics based on potassium-sodium niobate with giant d33. ACS Appl Mater Interfaces 5(16):7718–7725

    Article  CAS  Google Scholar 

  290. Zhao C, Feng Y, Wu H, Wu J (2016) Phase boundary design and high piezoelectric activity in (1-x)(Ba0.93Ca0.07)TiO3-xBa(Sn1-yHfy)O3 lead-free ceramics. J Alloys Compd 666:372–379

    Article  CAS  Google Scholar 

  291. Wang X, Wu J, Xiao D, Cheng X, Zheng T, Lou X, Zhang B, Zhu J (2014) New potassium-sodium niobate ceramics with a giant d33. ACS Appl Mater Interfaces 6(9):6177–6180

    Article  CAS  Google Scholar 

  292. Wang X, Zheng T, Wu J, Xiao D, Zhu J, Wang H, Wang X, Lou X, Gu Y (2015) Characteristics of giant piezoelectricity around the rhombohedral-tetragonal phase boundary in (K, Na)NbO3-based ceramics with different additives. J Mater Chem A 3(31):15951–15961

    Article  CAS  Google Scholar 

  293. Wang X, Wu J, Xiao D, Cheng X, Zheng T, Zhang B, Lou X, Zhu J (2014) Large d33 in (K, Na)(Nb, Ta, Sb)O3-(Bi, Na, K)ZrO3 lead-free ceramics. J Mater Chem A 2(12):4122–4126

    Article  CAS  Google Scholar 

  294. Fu D, Itoh M (2015) Role of Ca off-centering in tuning the ferroelectric phase transitions in Ba (Zr,Ti)O3 system. arXiv preprint arXiv:1503.00406

  295. Li JF, Wang K, Zhu FY, Cheng LQ, Yao FZ (2013) (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 96(12):3677–3696

    Article  CAS  Google Scholar 

  296. Wu J, Tao H, Yuan Y, Lv X, Wang X, Lou X (2015) Role of antimony in the phase structure and electrical properties of potassium-sodium niobate lead-free ceramics. RSC Adv 5(19):14575–14583

    Article  CAS  Google Scholar 

  297. Pu Y, Yao M, Liu H, Frömling T (2016) Phase transition behavior, dielectric and ferroelectric properties of (1-x)(Bi0.5Na0.5)TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics. J Eur Ceram Soc 36(10):2461–2468

    Article  CAS  Google Scholar 

  298. Vögler M, Novak N, Schader F, Rödel J (2017) Temperature-dependent volume fraction of polar nanoregions in lead-free (1-x)(Bi0.5Na0.5)TiO3-xBaTiO3 ceramics. Phys Rev B 95(2):024104

    Article  Google Scholar 

  299. Ullah A, Ishfaq M, Ahn CW, Ullah A, Awan SE, Kim IW (2015) Relaxor behavior and piezoelectric properties of Bi(Mg0.5Ti0.5)O3-modified Bi0.5Na0.5TiO3 lead-free ceramics. Ceram Int 41(9):10557–10564

    Article  CAS  Google Scholar 

  300. Yao G, Wang X, Wu Y, Li L (2012) Nb-Doped 0.9BaTiO3-0.1(Bi0.5Na0.5)TiO3 ceramics with stable dielectric properties at high temperature. J Am Ceram Soc 95(2):614–618

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiagang Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J. (2018). Preparation and Characterization. In: Advances in Lead-Free Piezoelectric Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-8998-5_2

Download citation

Publish with us

Policies and ethics