Skip to main content

Multiscale and Multimodal Imaging for Connectomics

  • Chapter
  • First Online:
Advanced Optical Methods for Brain Imaging

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 5))

  • 1790 Accesses

Abstract

Recent advances in optical imaging tools for mapping the structural and functional connectomes have greatly augmented our understanding of the brains. The brain is a multilayered and multicompartmental organ where the structures possess multiple length scales, ranging from nanometer (single synapses) to centimeter (whole intact organ), and its functions take place at multiple timescales, ranging from sub-milliseconds (synaptic events) to years (behavioral changes). Therefore, neuroscientists need to image neurocircuits not only at nanometric spatial resolution but also in millisecond time frame in large brain volumes to adequately study neuronal functions. An ideal tool for brain imaging should provide high speed, high resolution, and high contrast with deep penetration in large tissue volumes and sufficient molecular specificity. Toward this end, recent progresses in the optical brain imaging technologies have allowed extracting unprecedented insights into brain. In this chapter, we discuss the various imaging modalities aiming for high-throughput brain imaging, as well as the challenges encountered in imaging the connectome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.I. Bargmann, E. Marder, From the connectome to brain function. Nat. Methods 10(6), 483–490 (2013)

    Article  Google Scholar 

  2. M. Kaiser, Neuroanatomy: connectome connects fly and mammalian brain networks. Curr. Biol. 25(10), R416–R418 (2015)

    Article  Google Scholar 

  3. S. Herculano-Houzel, The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009)

    Article  Google Scholar 

  4. A.S. Chiang et al., Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21(1), 1–11 (2011)

    Article  MathSciNet  Google Scholar 

  5. M. Helmstaedter, Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nat. Methods 10(6), 501–507 (2013)

    Article  Google Scholar 

  6. L. Silvestri, A.A. Mascaro, J. Lotti, L. Sacconi, F.S. Pavone, Advanced optical techniques to explore brain structure and function. J. Innovative Opt. Health Sci. 6(1), 1230002 (2013)

    Article  Google Scholar 

  7. A.E. Pereda, Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15(4), 250–263 (2014)

    Article  Google Scholar 

  8. T.E. Behrens, O. Sporns, Human connectomics. Curr. Opin. Neurobiol. 22(1), 144–153 (2012)

    Article  Google Scholar 

  9. J.L. Morgan, J.W. Lichtman, Why not connectomics? Nat. Methods 10(6), 494–500 (2013)

    Article  Google Scholar 

  10. J. Yao, L.V. Wang, Photoacoustic brain imaging: from microscopic to macroscopic scales. Neurophotonics 1(1), 011003 (2014)

    Article  Google Scholar 

  11. L. Degenhardt et al., Global burden of disease attributable to illicit drug use and dependence: findings from the Global Burden of Disease Study 2010. Lancet 382(9904), 1564–1574 (2010)

    Article  Google Scholar 

  12. T. Vos et al., Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859), 2163–2196 (2012)

    Article  Google Scholar 

  13. J.W. Lichtman, W. Denk, The big and the small: challenges of imaging the brain’s circuits. Science 334(6056), 618–623 (2011)

    Article  Google Scholar 

  14. O. Sporns, Making sense of brain network data. Nat. Methods 10(6), 491–493 (2013)

    Article  Google Scholar 

  15. V.M. Ho, J.A. Lee, K.C. Martin, The cell biology of synaptic plasticity. Science 334(6056), 623–628 (2011)

    Article  Google Scholar 

  16. C.I. Bargmann, Beyond the connectome: how neuromodulators shape neural circuits. BioEssays 34(6), 458–465 (2012)

    Article  Google Scholar 

  17. B. Alvarez-Castelao, E.M. Schuman, The regulation of synaptic protein turnover. J. Biol. Chem. 290(48), 28623–28630 (2015)

    Article  Google Scholar 

  18. M.P. Monopoli et al., Temporal proteomic profile of memory consolidation in the rat hippocampal dentate gyrus. Proteomics 11(21), 4189–4201 (2011)

    Article  Google Scholar 

  19. S.J. Sigrist, B.L. Sabatini, Optical super-resolution microscopy in neurobiology. Cur. Opin. Neurobiol. 22(1), 86–93 (2012)

    Article  Google Scholar 

  20. B. Asrican et al., Next-generation transgenic mice for optogenetic analysis of neural circuits. Front. Neural Circuit 7 (2013)

    Google Scholar 

  21. W. Denk, K. Svoboda, Photon upmanship: techreview why multiphoton imaging is more than a gimmick. Neuron 18, 351–357 (1997)

    Article  Google Scholar 

  22. N. Korogod, C.C. Petersen, G.W. Knott, Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. Elife 4, e05793 (2015)

    Article  Google Scholar 

  23. B. Hammond et al., Toxicological evaluation of proteins introduced into food crops. Crit. Rev. Toxicol. 43(Sup2), 25–42 (2013)

    Article  MathSciNet  Google Scholar 

  24. C. Asbury, Brain Imaging Technologies and Their Applications in Neuroscience (The Dana Foundation, New York, 2011), pp. 1–45

    Google Scholar 

  25. R.C. Craddock et al., Imaging human connectomes at the macroscale. Nat. Methods 10(6), 524–539 (2013)

    Article  Google Scholar 

  26. D. Le Bihan, M. Iima, Diffusion magnetic resonance imaging: what water tells us about biological tissues. PLoS Biol. 13(7), e1002203 (2015)

    Article  Google Scholar 

  27. B.A. Mueller, K.O. Lim, L. Hemmy, J. Camchong, Diffusion MRI and its role in neuropsychology. Neuropsychol. Rev. 25(3), 250–271 (2015)

    Article  Google Scholar 

  28. R.B. Buxton, The physics of functional magnetic resonance imaging (fMRI). Rep. Prog. Phys. 76(9), 096601 (2013)

    Article  Google Scholar 

  29. M. Helmstaedter, K.L. Briggman, W. Denk, 3D structural imaging of the brain with photons and electrons. Curr. Opin. Neurobiol. 18(6), 633–641 (2008)

    Article  Google Scholar 

  30. A. Dani, B. Huang, New resolving power for light microscopy: applications to neurobiology. Curr. Opin. Neurobiol. 20(5), 648–652 (2010)

    Article  Google Scholar 

  31. J.G. White, E. Southgate, J.N. Thomson, S. Brenner, The structure of the nervous system of the nematode Caenorhabditis elegans: the mind of a worm. Phil. Trans. R. Soc. Lond 314, 1–340 (1986)

    Article  Google Scholar 

  32. K.L. Briggman, D.D. Bock, Volume electron microscopy for neuronal circuit reconstruction. Curr. Opin. Neurobiol. 22(1), 154–161 (2012)

    Article  Google Scholar 

  33. M. Gregorini, J. Wang, X.S. Xie, R.A. Milligan, A. Engel, Three-dimensional reconstruction of bovine brain V-ATPase by cryo-electron microscopy and single particle analysis. J. Struct. Biol. 158(3), 445–454 (2007)

    Article  Google Scholar 

  34. L. Silvestri, A. Bria, L. Sacconi, G. Iannello, F.S. Pavone, Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Opt. Express 20(18), 20582–20598 (2012)

    Article  Google Scholar 

  35. M.B. Ahrens, M.B. Orger, D.N. Robson, J.M. Li, P.J. Keller, Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10(5), 413–420 (2013)

    Article  Google Scholar 

  36. R. Kawakami et al., Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser. Sci. Rep. 3, srep01014 (2013)

    Article  Google Scholar 

  37. M.N. Economo et al., A platform for brain-wide imaging and reconstruction of individual neurons. eLife 5, e10566 (2016)

    Google Scholar 

  38. S.W. Hell et al., Handbock of Biological Confocal Microscopy (Springer, New York, 2006), pp. 571–579

    Book  Google Scholar 

  39. S.W. Hell et al., The 2015 super-resolution microscopy roadmap. J. Phys. D Appl. Phys. 48(44), 44300 (2015)

    Article  Google Scholar 

  40. D.J. Smith, Ultimate resolution in the electron microscope? Mater. Today 11, 30–38 (2008)

    Article  Google Scholar 

  41. S.C. Sidenstein et al., Multicolour multilevel STED nanoscopy of actin/spectrin organization at synapses. Sci. Rep. 6, 26725 (2016)

    Article  Google Scholar 

  42. P.A. Santi, Light sheet fluorescence microscopy: a review. J. Histochem. Cytochem. 59(2), 129–138 (2011)

    Article  Google Scholar 

  43. J.D. Manton, E.J. Rees, triSPIM: light sheet microscopy with isotropic super-resolution. Opt. Lett. 41(18), 4170–4173 (2016)

    Article  Google Scholar 

  44. R. Heintzmann, G. Ficz, Breaking the resolution limit in light microscopy. Briefings in Funct. Genomics 5(4), 289–301 (2006)

    Article  Google Scholar 

  45. X.L. Deán-Ben, H. López-Schier, D. Razansky, Optoacoustic micro-tomography at 100 volumes per second. Sci. Rep. 7(1), 6850 (2017)

    Article  Google Scholar 

  46. Z. Wu et al., Multi-photon microscopy in cardiovascular research. Methods 130, 79–89 (2017)

    Article  Google Scholar 

  47. Y. Chen et al., Review of advanced imaging techniques. J Pathol Inform 3, 22 (2012)

    Article  Google Scholar 

  48. G. Follain, L. Mercier, N. Osmani, S. Harlepp, J.G. Goetz, Seeing is believing–multi-scale spatio-temporal imaging towards in vivo cell biology. J. Cell Sci. 130(1), 23–38 (2017)

    Article  Google Scholar 

  49. M. Maglione, S.J. Sigrist, Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences. Nat. Neurosci. 16(7), 790–797 (2013)

    Article  Google Scholar 

  50. L. Schermelleh, R. Heintzmann, H. Leonhardt, A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190(2), 165–175 (2010)

    Article  Google Scholar 

  51. S. Zhang et al., Diagnosis of gastroesophageal reflux disease using real-time magnetic resonance imaging. Scientific reports 5, 12112 (2015)

    Article  Google Scholar 

  52. X.L. Deán-Ben et al., Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators. Light Sci. Appl. 5(12), e16201 (2016)

    Article  Google Scholar 

  53. Z. Zhi, W. Qin, J. Wang, W. Wei, R.K. Wang, 4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source. Opt. Lett. 40(8), 1779–1782 (2015)

    Article  Google Scholar 

  54. S. Choi et al., Development of a high speed laser scanning confocal microscope with an acquisition rate up to 200 frames per second. Opt. Express 21(20), 23611–23618 (2013)

    Article  Google Scholar 

  55. A.D. Grand, S. Bonfig, Selecting a microscope based on imaging depth. Olympus https://www.photonics.com/a57114/Selecting_a_Microscope_Based_on_Imaging_Depth. Accessed: 11 Jan 2018

  56. Multiphoton Confocal Microscope (Nikon), http://www.nikon.com/products/microscope-solutions/support/download/brochures/pdf/2ce-scah-8r.pdf

  57. K. Bahlmann et al., Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz. Opt. Express 15(17), 10991–10998 (2007)

    Article  Google Scholar 

  58. R. Tomer et al., SPED light sheet microscopy: fast mapping of biological system structure and function. Cell 163(7), 1796–1806 (2015)

    Article  Google Scholar 

  59. R. Schmidt et al., Spherical nanosized focal spot unravels the interior of cells. Nat. Methods 5(6), 539–544 (2008)

    Article  Google Scholar 

  60. J. Schneider et al., Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics. Nat. Methods 12(9), 827–830 (2015)

    Article  Google Scholar 

  61. M.A. Lauterbach, E. Ronzitti, J.R. Sternberg, C. Wyart, V. Emiliani, Fast calcium imaging with optical sectioning via HiLo microscopy. PLoS ONE 10(12), e0143681 (2015)

    Article  Google Scholar 

  62. F. Huang et al., Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 10(7), 653–658 (2013)

    Article  Google Scholar 

  63. M. Fernández-Suárez, A.Y. Ting, Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008)

    Article  Google Scholar 

  64. T.V. Truong, W. Supatto, D.S. Koos, J.M. Choi, S.E. Fraser, Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 8(9), 757–760 (2011)

    Article  Google Scholar 

  65. V. Westphal, S.W. Hell, Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett. 94(14), 143903 (2005)

    Article  Google Scholar 

  66. E. Betzig et al., Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 1642–1645 (2006)

    Article  Google Scholar 

  67. M.G. Gustafsson, Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. PNAS 102(37), 13081–13086 (2005)

    Article  Google Scholar 

  68. F. Chen, P.W. Tillberg, E.S. Boyden, Expansion microscopy. Science 347(6221), 543–548 (2015)

    Article  Google Scholar 

  69. T. Zimmermann, J. Rietdorf, R. Pepperkok, Spectral imaging and its applications in live cell microscopy. FEBS Lett. 546(1), 87–92 (2003)

    Article  Google Scholar 

  70. L. Wei et al., Super-multiplex vibrational imaging. Nature 544(7651), 465–470 (2017)

    Article  Google Scholar 

  71. W. Supatto, T.V. Truong, D. Débarre, E. Beaurepaire, Advances in multiphoton microscopy for imaging embryos. Curr. Opin. Genet. Dev. 21(5), 538–548 (2011)

    Article  Google Scholar 

  72. K. Wang, N.G. Horton, K. Charan, C. Xu, Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics. IEEE J. Sel. Top. Quantum Electron. 20(2), 50–60 (2014)

    Article  Google Scholar 

  73. T.F. Holekamp, D. Turaga, T.E. Holy, Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron 57(5), 661–672 (2008)

    Article  Google Scholar 

  74. A.S. Chiang et al., Three-dimensional mapping of brain neuropils in the cockroach, Diploptera punctata. J. Comp. Neurol. 440(1), 1–11 (2001)

    Article  MathSciNet  Google Scholar 

  75. E.A. Susaki et al., Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat. Protocols 10(11), 1709–1727 (2015)

    Article  Google Scholar 

  76. K. Chung, K. Deisseroth, CLARITY for mapping the nervous system. Nat. Methods 10(6), 508–513 (2013)

    Article  Google Scholar 

  77. S. Liu et al., Three-dimensional, isotropic imaging of mouse brain using multi-view deconvolution light sheet microscopy. J. Innovative Opt. Health Sci. 10(5), 1743006 (2017)

    Article  MathSciNet  Google Scholar 

  78. N. Ji, H. Shroff, H. Zhong, E. Betzig, Advances in the speed and resolution of light microscopy. Curr. Opin. Neurobiol. 18(6), 605–616 (2008)

    Article  Google Scholar 

  79. Olympus Water Immersion Objectives, https://www.edmundoptics.eu/microscopy/infinity-corrected-objectives/Olympus-Water-Immersion-Objectives/

  80. Ultra Deep Imaging for Confocal Laser Scanning. https://applications.zeiss.com/C125792900358A3F/0/3647976B0F1684A9C1257A0E00488614/$FILE/EN_41_011_009_scale_objective.pdf

  81. G. McConnell et al., A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout. Elife 5, e18659 (2016)

    Article  Google Scholar 

  82. T. Panier, S.A. Romano, R. Olive, T. Pietri, G. Sumbre, R. Candelier, G. Debrégeas, Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy. Front. Neural Circuits 7, 65 (2013)

    Article  Google Scholar 

  83. N. George, Spinning disk vs. laser-scanning confocal microscopes. Photonics Spectra 38, 69–75 (2004)

    Google Scholar 

  84. K.H. Kim et al., Multifocal multiphoton microscopy based on multianode photomultiplier tubes. Opt. Express 15(18), 11658–11678 (2007)

    Article  Google Scholar 

  85. L.V. Wang, S. Hu, Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075), 1458–1462 (2012)

    Article  Google Scholar 

  86. J. Lefebvre, A. Castonguay, P. Pouliot, M. Descoteaux, F. Lesage, Whole mouse brain imaging using optical coherence tomography: reconstruction, normalization, segmentation, and comparison with diffusion MRI. Neurophotonics 4(4), 041501 (2017)

    Article  Google Scholar 

  87. E. Osiac et al., Optical coherence tomography as a promising imaging tool for brain investigations. Rom. J. Morphol. Embryol. 55(2), 507–512 (2014)

    Google Scholar 

  88. J. Men et al., Optical coherence tomography for brain imaging and developmental biology. IEEE J. Sel. Top. Quantum Electron. 22(4), 120–132 (2016)

    Article  Google Scholar 

  89. B. Huang, H. Babcock, X. Zhuang, Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7), 1047–1058 (2010)

    Article  Google Scholar 

  90. L.W. Swanson, J.W. Lichtman, From Cajal to connectome and beyond. Annu. Rev. Neurosci. 39, 197–216 (2016)

    Article  Google Scholar 

  91. B.N. Giepmans, S.R. Adams, M.H. Ellisman, R.Y. Tsien, The fluorescent toolbox for assessing protein location and function. Science 312(5771), 217–224 (2006)

    Article  Google Scholar 

  92. F. Lagugné-Labarthet, Y.R. Shen, in Optical Imaging and Microscopy. ed. by P. Török, F.-J. Kao. Springer Series in Optical Sciences, vol. 87 (Springer, Berlin, Heidelberg, 2007), vol. 2, pp. 237–268

    Google Scholar 

  93. M.J. Sanderson, I. Smith, I. Parker, M.D. Bootman, Fluorescence microscopy. Cold Spring Harbor Protoc. 10, 2131 (2014). https://doi.org/10.1101/pdb.top071795

    Article  Google Scholar 

  94. J.A. Conchello, J.W. Lichtman, Optical sectioning microscopy. Nat. Methods 2(12), 920 (2005)

    Article  Google Scholar 

  95. M. Symms, H.R. Jäger, K. Schmierer, T.A. Yousry, A review of structural magnetic resonance neuroimaging. J. Neurol. 75(9), 1235–1244 (2004)

    Google Scholar 

  96. X. Wang et al., Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotech. 21(7), 803–806 (2003)

    Article  Google Scholar 

  97. X. Tao et al., in Proceedings of SPIE: Neural Imaging and Sensing (SPIE, 2017), vol. 10051, p. 100510R

    Google Scholar 

  98. M. Minsky, Memoir on inventing the confocal scanning microscope. Scanning 10(4), 128–138 (1988)

    Article  MathSciNet  Google Scholar 

  99. C.J.R. Sheppard, A. Choudhury, Image formation in the scanning microscope. J. Mod. Optic. 24(10), 1051–1073 (1977)

    Google Scholar 

  100. R.H. Webb, Confocal optical microscopy. Rep. Prog. Phys. 59(3), 427 (1996)

    Article  Google Scholar 

  101. C. Cremer, B.R. Masters, Resolution enhancement techniques in microscopy. Eur. Phys. J. H 38(3), 281–344 (2013)

    Article  Google Scholar 

  102. G. Cox, C.J. Sheppard, Practical limits of resolution in confocal and non-linear microscopy. Microsc. Res. Tech. 63(1), 18–22 (2004)

    Article  Google Scholar 

  103. B.R. Masters, M. Böhnke, Three-dimensional confocal microscopy of the living human eye. Annu. Rev. Biomed. Eng. 4(1), 69–91 (2002)

    Article  Google Scholar 

  104. P.V. Ravichandra, H. Vemisetty, K. Deepthi, S. Jayaprada Reddy, D. Ramkiran, Comparative evaluation of marginal adaptation of BiodentineTM and other commonly used root end filling materials-an invitro study. J. Clin. Diagn. Res.—JDCR 8(3), 243 (2014)

    Google Scholar 

  105. N.S. Claxton, T.J. Fellers, N.W. Davidson, Laser scanning confocal microscopy. Department of Optical Microscopy and Digital Imaging, Florida State University, Tallahassee (2006). http://www.olympusconfocal.com/theory/LSCMIntro.pdf

  106. J. Jonkman, C.M. Brown, Any way you slice it—A comparison of confocal microscopy techniques. J. Biomol. Tech.: JBT 26(2), 54 (2015)

    Google Scholar 

  107. M. Petráň, M. Hadravský, M.D. Egger, R. Galambos, Tandem-scanning reflected-light microscope. JOSA 58(5), 661–664 (1968)

    Google Scholar 

  108. G. De Luca, R. Breedijk, R. Hoebe, S. Stallinga, E. Manders, Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity. Methods Appl. Fluores. 5(1), 015002 (2017)

    Article  Google Scholar 

  109. G.M. De Luca et al., Re-scan confocal microscopy: scanning twice for better resolution. Biomed. Opt. Express 4(11), 2644–2656 (2013)

    Article  Google Scholar 

  110. R. Engelmann, T. Anhut, I. Kleppe, K. Weisshart, Airyscanning: Evoking the full potential of confocal microscopy. Imaging Microsc. 3, 20–21 (2014)

    Google Scholar 

  111. J. Huff, The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nat. Methods 12(12), 1–2 (2015)

    Article  Google Scholar 

  112. T. Azuma, T. Kei, Super-resolution spinning-disk confocal microscopy using optical photon reassignment. Opt. Express 23(11), 15003–15011 (2015)

    Article  Google Scholar 

  113. J. Huff, The fast mode for ZEISS LSM 880 with Airyscan: high-speed confocal imaging with super-resolution and improved signal-to-noise ratio. Nat. Methods 13(11), I-II (2016)

    Article  Google Scholar 

  114. M.D. Egger, M. Petran, New reflected-light microscope for viewing unstained brain and ganglion cells. Science 157(3786), 305–307 (1967)

    Article  Google Scholar 

  115. M. Dailey, G. Marrs, J. Satz, M. Waite, Concepts in imaging and microscopy: Exploring biological structure and function with confocal microscopy. Biol. Bull. 197(2), 115–122 (1999)

    Article  Google Scholar 

  116. T. Hosokawa, D.A. Rusakov, T.V. Bliss, A. Fine, Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP. J. Neurosci. 15(8), 5560–5573 (1995)

    Article  Google Scholar 

  117. A. Villringer et al., Confocal laser microscopy to study microcirculation on the rat brain surface in vivo. Brain Res. 504(1), 159–160 (1989)

    Article  Google Scholar 

  118. P.V. Belichenko, A. Dahlström, Studies on the 3-dimensional architecture of dendritic spines and varicosities in human cortex by confocal laser scanning microscopy and Lucifer yellow microinjections. J. Neurosci. Methods 57(1), 55–61 (1995)

    Article  Google Scholar 

  119. T.R. Brazelton, F.M. Rossi, G.I. Keshet, H.M. Blau, From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290(5497), 1775–1779 (2000)

    Article  Google Scholar 

  120. H.J. Romijn et al., Double immunolabeling of neuropeptides in the human hypothalamus as analyzed by confocal laser scanning fluorescence microscopy. J. Histochem. Cytochem. 47(2), 229–235 (1999)

    Article  Google Scholar 

  121. A. Rodriguez et al., Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images. Methods 30(1), 94–105 (2003)

    Article  Google Scholar 

  122. Y. Takahara, N. Matsuki, Y. Ikegaya, Nipkow confocal imaging from deep brain tissues. J. Integr. Neurosci. 10(1), 121–129 (2011)

    Article  Google Scholar 

  123. R.C. Gutierre, D. Vannucci Campos, R.A. Mortara, A.A. Coppi, R.M. Arida, Reflection imaging of China ink-perfused brain vasculature using confocal laser-scanning microscopy after clarification of brain tissue by the Spalteholz method. J. Anat. 230(4), 601–606 (2017)

    Article  Google Scholar 

  124. W. Spalteholz, Uber das Durchsichtigmachen von menschlichen und tierischen Praparaten (S. Hierzel, Leipzig, 1914)

    Google Scholar 

  125. A. Azaripour et al., A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Prog. Histochem. Cytoc. 51(2), 9–23 (2016)

    Article  Google Scholar 

  126. C. Grienberger, A. Konnerth, Imaging calcium in neurons. Neurons 73(5), 862–885 (2002). https://doi.org/10.1016/j.neuron.2012.02.011

    Article  Google Scholar 

  127. A. Ustione, D.W. Piston, A simple introduction to multiphoton microscopy. J. Microsc. 243(3), 221–226 (2011)

    Article  Google Scholar 

  128. S.W. Hell et al., Three-photon excitation in fluorescence microscopy. J. Biomed. Opt. 1(1), 71–74 (1996)

    Article  MathSciNet  Google Scholar 

  129. B.A. Wilt et al., Advances in light microscopy for neuroscience. Annu. Rev. Neurosci. 32, 435–506 (2009)

    Article  Google Scholar 

  130. J. Tønnesen, U.V. Nägerl, Superresolution imaging for neuroscience. Exp. Neurol. 242, 33–40 (2013)

    Article  Google Scholar 

  131. J.B. Ding, K.T. Takasaki, B.L. Sabatini, Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63(4), 429–437 (2009)

    Article  Google Scholar 

  132. J. Rietdorf, E.H.K. Stelzer, in Handbook Of Biological Confocal Microscopy, ed. by J.P. Pawley (Springer, Boston, MA, 2006)

    Chapter  Google Scholar 

  133. M.G. Gustafsson, D.A. Agard, J.W. Sedat, I5 M: 3D widefield light microscopy with better than 100 nm axial resolution. J. Microsc. 195(1), 10–16 (1999)

    Article  Google Scholar 

  134. J. Bewersdorf, R. Schmidt, S.W. Hell, Comparison of I5 M and 4Pi-microscopy. J. Microsc. 222(2), 105–117 (2006)

    Article  MathSciNet  Google Scholar 

  135. M.A. Lauterbach, C. Eggeling, in Super-Resolution Microscopy Techniques in the Neurosciences ed. by E.F. Fornasiero, S.O. Rizzoli. Neuromethods, vol. 86 (Humana Press, Totowa, NJ, 2014), pp. 41–71. https://doi.org/10.1007/978-1-62703-983-3_3

  136. A. Egner, S.W. Hell, Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol. 15(4), 207–215 (2005)

    Article  Google Scholar 

  137. C.G. Galbraith, J.A. Galbraith, Super-resolution microscopy at a glance. J. Cell Sci. 124(10), 1607–1611 (2011)

    Article  Google Scholar 

  138. C.J.R. Sheppard, Resolution and super-resolution. Microsc. Res. Tech. 80, 590–598 (2017)

    Article  Google Scholar 

  139. L. Möckl, D.C. Lamb, C. Bräuchle, Super-resolved fluorescence microscopy: nobel prize in chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner. Angewandte Chemie Int. Ed. 53(51), 13972–13977 (2014)

    Article  Google Scholar 

  140. The nobel prize in chemistry. Press Release (2014). https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/press.html. Accessed 8 Oct 2014

  141. G. Keiser, Biophotonics: Concepts to Applications (Springer, Singapore, 2016)

    Book  Google Scholar 

  142. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19(11), 780–782 (1994)

    Article  Google Scholar 

  143. S.W. Hell, Toward fluorescence nanoscopy. Nat. Biotechnol. 21(11), 1347–1355 (2003)

    Article  Google Scholar 

  144. M.G. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198(2), 82–87 (2000)

    Article  Google Scholar 

  145. S.T. Hess, T.P. Girirajan, M.D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91(11), 4258–4272 (2006)

    Article  Google Scholar 

  146. M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3(10), 793–796 (2006)

    Article  Google Scholar 

  147. B. Huang, M. Bates, X. Zhuang, Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009)

    Article  Google Scholar 

  148. B. Huang, Super-resolution optical microscopy: multiple choices. Curr. Opin. Chem. Biol. 14(1), 10–14 (2010)

    Article  Google Scholar 

  149. M. Heilemann, Fluorescence microscopy beyond the diffraction limit. J. Biotechnol. 149(4), 243–251 (2010)

    Article  Google Scholar 

  150. B.O. Leung, K.C. Chou, Review of super-resolution fluorescence microscopy for biology. Appl. Spectrosc. 65(9), 967–980 (2011)

    Article  Google Scholar 

  151. T.J. Gould, S.T. Hess, Nanoscale biological fluorescence imaging: Breaking the diffraction barrier. Methods Cell Biol. 89, 329–358 (2008)

    Article  Google Scholar 

  152. T.A. Klar, S.W. Hell, Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24(14), 954–956 (1999)

    Article  Google Scholar 

  153. G. Donnert et al., Macromolecular-scale resolution in biological fluorescence microscopy. PNAS 103(31), 11440–11445 (2006)

    Article  Google Scholar 

  154. E. Rittweger, K.Y. Han, S.E. Irvine, C. Eggeling, S.W. Hell, STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photonics 3(3), 144–147 (2009)

    Article  Google Scholar 

  155. M. Dyba, S.W. Hell, Focal spots of size λ/23 open up far-field florescence microscopy at 33 nm axial resolution. Phys. Rev. Lett. 88(16), 163901 (2002)

    Article  Google Scholar 

  156. M. Hofmann, C. Eggeling, S. Jakobs, S.W. Hell, Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. PNAS 102(49), 17565–17569 (2005)

    Article  Google Scholar 

  157. S.W. Hell, Far-field optical nanoscopy. Science 316(5828), 1153–1158 (2007)

    Article  Google Scholar 

  158. E. D’Este et al., Subcortical cytoskeleton periodicity throughout the nervous system. Sci. Rep. 6, 22741 (2016)

    Article  Google Scholar 

  159. M.A. Schwentker, H. Bock, M. Hofmann, S. Jakobs, J. Bewersdorf, C. Eggeling, S.W. Hell, Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microsc. Res. Tech. 70, 269–280 (2007). https://doi.org/10.1002/jemt.20443

    Article  Google Scholar 

  160. S. Bretschneider, C. Eggeling, S.W. Hell, Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett. 98(21), 218103 (2007)

    Article  Google Scholar 

  161. S.W. Hell, M. Kroug, Ground-state-depletion fluorescence microscopy: A concept for breaking the diffraction resolution limit. Appl. Phys. B: Lasers Opt. 60(5), 495–497 (1995)

    Article  Google Scholar 

  162. S.W. Hell, M. Dyba, S. Jakobs, Concepts for nanoscale resolution in fluorescence microscopy. Curr. Opin. Neurobiol. 14(5), 599–609 (2004)

    Article  Google Scholar 

  163. S.W. Hell, Microscopy and its focal switch. Nat. Methods 6(1), 24–32 (2009)

    Article  MathSciNet  Google Scholar 

  164. K.I. Willig, S.O. Rizzoli, V. Westphal, R. Jahn, S.W. Hell, STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086), 935–939 (2006)

    Article  Google Scholar 

  165. R.J. Kittel et al., Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312(5776), 1051–1054 (2006)

    Article  Google Scholar 

  166. J.J. Sieber, K.I. Willig, R. Heintzmann, S.W. Hell, T. Lang, The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophys. J. 90(8), 2843–2851 (2006)

    Article  Google Scholar 

  167. U.V. Nägerl, K.I. Willig, B. Hein, S.W. Hell, T. Bonhoeffer, Live-cell imaging of dendritic spines by STED microscopy. PNAS 105(48), 18982–18987 (2008)

    Article  Google Scholar 

  168. S. Fendl, J. Pujol-Martí, J. Ryan, A. Borst, R. Kasper, in Light Microscopy: Methods and Protocols ed. by Y., M.H., H. vol. 1563 (Humana Press, New York, NY, 2017), pp. 143–150

    Google Scholar 

  169. S. Berning, K.I. Willig, H. Steffens, P. Dibaj, S.W. Hell, Nanoscopy in a living mouse brain. Science 335(6068), 551 (2012)

    Article  Google Scholar 

  170. V. Westphal et al., Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873), 246–249 (2008)

    Article  Google Scholar 

  171. Y. Hua et al., A readily retrievable pool of synaptic vesicles. Nat. Neurosci. 14(7), 833–839 (2011)

    Article  Google Scholar 

  172. N.T. Urban, K.I. Willig, S.W. Hell, U.V. Nägerl, STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys. J. 101(5), 1277–1284 (2011)

    Article  Google Scholar 

  173. I. Testa et al., Nanoscopy of living brain slices with low light levels. Neuron 75(6), 992–1000 (2012)

    Article  Google Scholar 

  174. S.A. Meyer et al., Super-resolution imaging of ciliary microdomains in isolated olfactory sensory neurons using a custom two-color stimulated emission depletion microscope. J. Biomed. Opt. 21(6), 066017 (2016)

    Article  Google Scholar 

  175. R. Chéreau, G.E. Saraceno, J. Angibaud, D. Cattaert, U.V. Nägerl, Superresolution imaging reveals activity-dependent plasticity of axon morphology linked to changes in action potential conduction velocity. PNAS 114(6), 1401–1406 (2017)

    Article  Google Scholar 

  176. E. D’Este, D. Kamin, F. Balzarotti, S.W. Hell, Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy. PNAS 114(2), E191–E199 (2017)

    Article  Google Scholar 

  177. L. Schermelleh et al., Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881), 1332–1336 (2008)

    Article  Google Scholar 

  178. K. Wicker, in Super-Resolution Microscopy Techniques in the Neurosciences ed. by E.F. Fornasiero, S.O. Rizzoli (Humana Press, 2014), pp. 133–165

    Google Scholar 

  179. R. Heintzmann, M.G. Gustafsson, Subdiffraction resolution in continuous samples. Nat. Photonics 3(7), 362–364 (2009)

    Article  Google Scholar 

  180. M.G. Gustafsson et al., Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94(12), 4957–4970 (2008)

    Article  Google Scholar 

  181. L. Shao et al., I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys. J. 94(12), 4971–4983 (2008)

    Article  Google Scholar 

  182. S. Usuki, T. Takada, K.T. Miura, Optical microscopy with improved resolution using two-beam interference of low-coherence light. Measurement 78, 373–380 (2016)

    Article  Google Scholar 

  183. J. Pielage et al., A presynaptic giant ankyrin stabilizes the NMJ through regulation of presynaptic microtubules and transsynaptic cell adhesion. Neuron 58(2), 195–209 (2008)

    Article  Google Scholar 

  184. R. Heintzmann, T.M. Jovin, C. Cremer, Saturated patterned excitation microscopy—a concept for optical resolution improvement. J. Opt. Soc. Am. A 19(8), 1599–1609 (2002). https://doi.org/10.1364/JOSAA.19.001599

    Article  Google Scholar 

  185. E.H. Rego et al., Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. PNAS 109(3), E135–E143 (2012)

    Article  Google Scholar 

  186. X. Long, J. Colonell, A.M. Wong, R.H. Singer, T. Lionnet, Quantitative mRNA imaging throughout the entire Drosophila brain. Nat. Methods 14(7), 703–706 (2017)

    Article  Google Scholar 

  187. H. Gong et al., High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level. Nature communications 7, 12142 (2016)

    Article  Google Scholar 

  188. B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, H. Rubinsztein-Dunlop, Coherent super-resolution microscopy via laterally structured illumination. Micron 38(2), 150–157 (2007)

    Article  Google Scholar 

  189. S., H., D.K., W., B., S., D.S., R., in Synapse Development. Methods in Molecular Biology ed. by A., P. vol. 1538 (Humana Press, New York, NY, 2017), pp. 155–167

    Google Scholar 

  190. M. Schouten et al., Imaging dendritic spines of rat primary hippocampal neurons using structured illumination microscopy. J. Vis. Exp.: JoVE 87, e51276 (2014)

    Google Scholar 

  191. T. Klein, S. Proppert, M. Sauer, Eight years of single-molecule localization microscopy. Histochem. Cell Biol. 141(6), 561–575 (2014)

    Article  Google Scholar 

  192. R.E. Thompson, D.R. Larson, W.W. Webb, Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82(5), 2775–2783 (2002)

    Article  Google Scholar 

  193. A. Yildiz, P.R. Selvin, Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc. Chem. Res. 38(7), 574–582 (2005)

    Article  Google Scholar 

  194. A. Yildiz et al., Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628), 2061–2065 (2003)

    Article  Google Scholar 

  195. S.K. Saka, in Super-Resolution Microscopy Techniques in the Neurosciences ed. by E.F. Fornasiero, S.O. Rizzoli (Humana Press, 2014), pp. 13–40

    Google Scholar 

  196. W.E. Moerner, Microscopy beyond the diffraction limit using actively controlled single molecules. J. Microsc. 246(3), 213–220 (2012)

    Article  Google Scholar 

  197. J. Lippincott-Schwartz, G.H. Patterson, Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol. 19(11), 555–565 (2009)

    Article  Google Scholar 

  198. M. Bates, T.R. Blosser, X. Zhuang, Short-range spectroscopic ruler based on a single-molecule optical switch. Phys. Rev. Lett. 94(10), 108101 (2005)

    Article  Google Scholar 

  199. N.C. Verma, C. Rao, C.K. Nandi, Nitrogen-doped biocompatible carbon dot as a fluorescent probe for STORM nanoscopy. J. Phys. Chem. C 122, 8, 4704–4709 (2018)

    Article  Google Scholar 

  200. G. Patterson, M. Davidson, S. Manley, J. Lippincott-Schwartz, Superresolution imaging using single-molecule localization. Annu. Rev. Phys. Chem. 61, 345–367 (2010)

    Article  Google Scholar 

  201. A. Dani, B. Huang, J. Bergan, C. Dulac, X. Zhuang, Superresolution imaging of chemical synapses in the brain. Neuron 65(8), 843–856 (2010)

    Article  Google Scholar 

  202. P. Dedecker, C. Flors, J.I. Hotta, H. Uji-i, J. Hofkens, 3D nanoscopy: bringing biological nanostructures into sharp focus. Angew. Chem. Int. Ed. 46(44), 8330–8332 (2007)

    Article  Google Scholar 

  203. M. Bates, B. Huang, X. Zhuang, Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr. Opin. Chem. Biol. 12(5), 505–514 (2008)

    Article  Google Scholar 

  204. A. Egner et al., Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys. J. 93(9), 3285–3290 (2007)

    Article  Google Scholar 

  205. J. Fölling et al., Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat. Methods 5(11), 943–945 (2008)

    Article  Google Scholar 

  206. A. Sharonov, R.M. Hochstrasser, Wide-field subdiffraction imaging by accumulated binding of diffusing probes. PNAS 103(50), 18911–18916 (2006)

    Article  Google Scholar 

  207. M. Heilemann et al., Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47(33), 6172–6176 (2008)

    Article  Google Scholar 

  208. S. Schedin-Weiss, I. Caesar, B. Winblad, H. Blom, L.O. Tjernberg, Super-resolution microscopy reveals γ-secretase at both sides of the neuronal synapse. Acta Neuropathol.Commun. 4(1), 29 (2016)

    Article  Google Scholar 

  209. N.A. Frost, H. Shroff, H. Kong, E. Betzig, T.A. Blanpied, Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. Neuron 67(1), 86–99 (2010)

    Article  Google Scholar 

  210. Y.M. Sigal, C.M. Speer, H.P. Babcock, X. Zhuang, Mapping synaptic input fields of neurons with super-resolution imaging. Cell 163(2), 493–505 (2015)

    Article  Google Scholar 

  211. B. Dudok et al., Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat. Neurosci. 18(1), 75–86 (2015)

    Article  Google Scholar 

  212. J. Zhang, C.M. Carver, F.S. Choveau, M.S. Shapiro, Clustering and Functional Coupling of Diverse Ion Channels and Signaling Proteins Revealed by Super-resolution STORM Microscopy in Neurons. Neuron 92(2), 461–478 (2016)

    Article  Google Scholar 

  213. H. Zhong, Applying superresolution localization-based microscopy to neurons. Synapse 69(5), 283–294 (2015)

    Article  Google Scholar 

  214. K. Xu, G. Zhong, X. Zhuang, Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339(6118), 452–456 (2013)

    Article  Google Scholar 

  215. T. Yoshimura, S.R. Stevens, C. Leterrier, M.C. Stankewich, M.N. Rasband, Developmental changes in expression of βIV spectrin splice variants at axon initial segments and nodes of ranvier. Front. Cell. Neurosci. 10, 304 (2017)

    Article  Google Scholar 

  216. K. Xu, H.P. Babcock, X. Zhuang, Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat. Methods 9(2), 185–188 (2012)

    Article  Google Scholar 

  217. K.F. Tehrani, J. Xu, Y. Zhang, P. Shen, P. Kner, Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm. Opt. Express 23(10), 13677–13692 (2015)

    Article  Google Scholar 

  218. M. Lakadamyali, H. Babcock, M. Bates, X. Zhuang, J. Lichtman, 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing. PLoS ONE 7(1), e30826 (2012)

    Article  Google Scholar 

  219. J. Vangindertael et al., Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM. Sci. Rep. 5, 13532 (2015)

    Google Scholar 

  220. L. Barna et al., Correlated confocal and super-resolution imaging by VividSTORM. Nat. Protoc. 11(1), 163–183 (2016)

    Article  Google Scholar 

  221. T.P. Li, T.A. Blanpied, Control of Transmembrane Protein Diffusion within the Postsynaptic Density Assessed by Simultaneous Single-Molecule Tracking and Localization Microscopy. Front. Synaptic Neurosci. 8, 19 (2016)

    Article  Google Scholar 

  222. C.C. Lo, A.S. Chiang, Toward Whole-Body Connectomics. J. Neurosci. 36(45), 11375–11383 (2016)

    Article  Google Scholar 

  223. L.L. Looger, O. Griesbeck, Genetically encoded neural activity indicators. Curr. Opin. Neurobiol. 22(1), 18–23 (2012)

    Article  Google Scholar 

  224. F. Helmchen, W. Denk, Deep tissue two-photon microscopy. Nat. Methods 2(12), 932–940 (2005)

    Article  Google Scholar 

  225. R.K. Benninger, D.W. Piston, Two‐photon excitation microscopy for the study of living cells and tissues. Curr. Protoc. Cell Bio. 4–11 (2013)

    Google Scholar 

  226. H.C. Ishikawa-Ankerhold, R. Ankerhold, G.P. Drummen, Advanced fluorescence microscopy techniques—Frap, flip, flap. Fret FLIM. Mol. 17(4), 4047–4132 (2012)

    Article  Google Scholar 

  227. T.S. Tkaczyk, Field Guide to Microscopy (SPIE, Bellingham, 2010)

    Book  Google Scholar 

  228. T.C. Peter, Two-photon fluorescence light microscopy. Encyclopedia of Life Sciences (2002). http://web.mit.edu/solab/Documents/Assets/So-2PF%20light%20microscopy.pdf

  229. F. Helmchen, W. Denk, New developments in multiphoton microscopy. Curr. Opin. Neurobiol. 12(5), 593–601 (2002)

    Article  Google Scholar 

  230. A. Diaspro et al., Multi-photon excitation microscopy. Biomed. Eng. Online 5(1), 36 (2006)

    Article  Google Scholar 

  231. W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248(4951), 73–76 (1990)

    Article  Google Scholar 

  232. Y. Mizuta, D. Kurihara, T. Higashiyama, Two-photon imaging with longer wavelength excitation in intact Arabidopsis tissues. Protoplasma 252(5), 1231–1240 (2015)

    Article  Google Scholar 

  233. M. Rubart, Two-photon microscopy of cells and tissue. Circ. Res. 95(12), 1154–1166 (2004)

    Article  Google Scholar 

  234. M.J. Miller, S.H. Wei, I. Parker, M.D. Cahalan, Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296(5574), 1869–1873 (2002)

    Article  Google Scholar 

  235. P. Bousso, E.A. Robey, Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by two-photon microscopy. Immunity 21(3), 349–355 (2004)

    Article  Google Scholar 

  236. D.W. Piston, in Fluorescence Microscopy: From Principles to Biological Applications, ed. by U. Kubitscheck (Wiley, 2017), pp. 203–242

    Chapter  Google Scholar 

  237. S. Zhuo et al., Label-free monitoring of colonic cancer progression using multiphoton microscopy. Biomed. Opt. Express 2(3), 615–619 (2011)

    Article  Google Scholar 

  238. R.M. Williams, W.R. Zipfel, W.W. Webb, Multiphoton microscopy in biological research. Curr. Opin. Chem. Biol. 5(5), 603–608 (2001)

    Article  Google Scholar 

  239. A.A. Mascaro et al., Multiphoton microscopy in brain imaging, in SPIE BiOS, vol. 932903 (2015)

    Google Scholar 

  240. R. Yuste, W. Denk, Dendritic spines as basic functional units of neuronal integration. Nature 375(6533), 682 (1995)

    Article  Google Scholar 

  241. W. Denk, M. Sugimori, R. Llinas, Two types of calcium response limited to single spines in cerebellar Purkinje cells. PNAS 92(18), 8279–8282 (1995)

    Article  Google Scholar 

  242. J.T. Trachtenberg, B.E. Chen, G.W. Knott, G. Feng, Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420(6917), 788 (2002)

    Article  Google Scholar 

  243. G.W. Knott, A. Holtmaat, L. Wilbrecht, E. Welker, K. Svoboda, Spine growth precedes synapse formation in the adult neocortex in vivo. Nat. Neurosci. 9(9), 1117 (2006)

    Article  Google Scholar 

  244. C.R. Rose, Y. Kovalchuk, J. Eilers, A. Konnerth, Two-photon Na+ imaging in spines and fine dendrites of central neurons. Pflügers Archiv Eur. J. Physiol. 439(1), 201–207 (1999)

    Article  Google Scholar 

  245. C. Stosiek, O. Garaschuk, K. Holthoff, A. Konnerth, In vivo two-photon calcium imaging of neuronal networks. PNAS 100(12), 7319–7324 (2003)

    Article  Google Scholar 

  246. C.J. Engelbrecht, R.S. Johnston, E.J. Seibel, F. Helmchen, Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Opt. Express 16(8), 5556–5564 (2008)

    Article  Google Scholar 

  247. F. Helmchen, M.S. Fee, D.W. Tank, W. Denk, A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals. Neuron 31(6), 903–912 (2001)

    Article  Google Scholar 

  248. W. Zong et al., Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 14(7), 713–719 (2017)

    Article  Google Scholar 

  249. J.H. Park, W. Sun, M. Cui, High-resolution in vivo imaging of mouse brain through the intact skull. PNAS 112(30), 9236–9241 (2015)

    Article  Google Scholar 

  250. X. Sun et al., Two-photon imaging of glutathione levels in intact brain indicates enhanced redox buffering in developing neurons and cells at the cerebrospinal fluid and blood-brain interface. J. Biol. Chem. 281(25), 17420–17431 (2006)

    Article  Google Scholar 

  251. S. Bovetti, C. Moretti, T. Fellin, Mapping brain circuit function in vivo using two-photon fluorescence microscopy. Micros. Res. Techn. 77(7), 492–501 (2014)

    Article  Google Scholar 

  252. M. Matsuzaki, M. Kondo, K. Kobayashi, M. Ohkura, J. Nakai, Two-photon calcium imaging of medial prefrontal cortex and hippocampus without cortical invasion (2017). https://doi.org/10.1101/119404

  253. R. Kawakami et al., Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser. Sci. Rep. 3, srep01014 (2013)

    Google Scholar 

  254. P. Theer, M.T. Hasan, W. Denk, Two-photon imaging to a depth of 1000 µm in living brains by use of a Ti: Al2O3 regenerative amplifier. Opt. Lett. 28(12), 1022–1024 (2003)

    Article  Google Scholar 

  255. D. Kobat, N.G. Horton, C. Xu, In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 16(10), 106014 (2011)

    Article  Google Scholar 

  256. A. Birkner, C.H. Tischbirek, A. Konnerth, Improved deep two-photon calcium imaging in vivo. Cell Calcium 64, 29–35 (2017)

    Article  Google Scholar 

  257. J.M. Girkin, S. Poland, A.J. Wright, Adaptive optics for deeper imaging of biological samples. Curr. Opin. Biotechnol. 20(1), 106–110 (2009)

    Article  Google Scholar 

  258. L. Sherman, J.Y. Ye, O. Albert, T.B. Norris, Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror. J. Microsc. 206(1), 65–71 (2002)

    Article  MathSciNet  Google Scholar 

  259. M.A. Neil et al., Adaptive aberration correction in a two-photon microscope. J. Microsc. 200(2), 105–108 (2000)

    Article  Google Scholar 

  260. J.C. Jung, A.D. Mehta, E. Aksay, R. Stepnoski, M.J. Schnitzer, In vivo mammalian brain imaging using one-and two-photon fluorescence microendoscopy. J. Neurophysiol. 92(5), 3121–3133 (2004)

    Article  Google Scholar 

  261. M.J. Levene, D.A. Dombeck, K.A. Kasischke, R.P. Molloy, W.W. Webb, In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 91(4), 1908–1912 (2004)

    Article  Google Scholar 

  262. M.E. Bocarsly et al., Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomed. Opt. Express 6(11), 4546–4556 (2015)

    Article  Google Scholar 

  263. R.P. Barretto, B. Messerschmidt, M.J. Schnitzer, In vivo fluorescence imaging with high-resolution microlenses. Nat. Methods 6(7), 511–512 (2009)

    Article  Google Scholar 

  264. M. Sato et al., Fast varifocal two-photon microendoscope for imaging neuronal activity in the deep brain. Biomed. Opt. Express 8(9), 4049–4060 (2017)

    Article  Google Scholar 

  265. D.G. Ouzounov et al., In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat. Methods 14(4), 388–390 (2017)

    Article  MathSciNet  Google Scholar 

  266. D.L. Wokosin, V.E. Centonze, S. Crittenden, J. White, Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser. Bioimaging 4(3), 208–214 (1996)

    Article  Google Scholar 

  267. C. Xu, W. Zipfel, J.B. Shear, R.M. Williams, W.W. Webb, Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. PNAS 93(20), 10763–10768 (1996)

    Article  Google Scholar 

  268. N.G. Horton et al., In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7(3), 205–209 (2013)

    Article  Google Scholar 

  269. J. Skoch, G.A. Hickey, S.T. Kajdasz, B.T. Hyman, B.J. Bacskai, In vivo imaging of amyloid-ß deposits in mouse brain with multiphoton microscopy, in Amyloid Proteins. Methods in Molecular Biology™ ed. by E.M. Sigurdsson. vol. 299 (Humana Press, 2005). https://doi.org/10.1385/1-59259-874-9:349

  270. J. Dong, R. Revilla-Sanchez, S. Moss, P.G. Haydon, Multiphoton in vivo imaging of amyloid in animal models of Alzheimer’s disease. Neuropharmacology 59(4), 268–275 (2010)

    Article  Google Scholar 

  271. D. Vučinić, T.J. Sejnowski, A compact multiphoton 3D imaging system for recording fast neuronal activity. PLoS ONE 2(8), e699 (2007)

    Article  Google Scholar 

  272. G.D. Reddy, K. Kelleher, R. Fink, P. Saggau, Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat. Neurosci. 11(6), 713–720 (2008)

    Article  Google Scholar 

  273. N. Callamaras, I. Parker, Construction of a confocal microscope for real-time xy and xz imaging. Cell Calcium 26(6), 271–279 (1999)

    Article  Google Scholar 

  274. W. Göbel, B.M. Kampa, F. Helmchen, Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat. Methods 4(1), 73 (2007)

    Article  Google Scholar 

  275. R. Kurtz, M. Fricke, J. Kalb, P. Tinnefeld, M. Sauer, Application of multiline two-photon microscopy to functional in vivo imaging. J. Neurosci. Methods 151(2), 276–286 (2006)

    Article  Google Scholar 

  276. M.L. Castanares, V. Gautam, J. Drury, H. Bachor, V.R. Daria, Efficient multi-site two-photon functional imaging of neuronal circuits. Biomed. Opt. Exp. 7(12), 5325–5334 (2016)

    Article  Google Scholar 

  277. M. Dal Maschio, A.M. De Stasi, F. Benfenati, T. Fellin, Three-dimensional in vivo scanning microscopy with inertia-free focus control. Opt. Lett. 36(17), 3503–3505 (2011)

    Article  Google Scholar 

  278. E.E. Hoover, J.A. Squier, Advances in multiphoton microscopy technology. Nat. Photonics 7(2), 93–101 (2013)

    Article  Google Scholar 

  279. N. Ji, J. Freeman, S.L. Smith, Technologies for imaging neural activity in large volumes. Nat. Neurosci. 19(9), 1154–1164 (2016)

    Article  Google Scholar 

  280. O. Garaschuk et al., Optical monitoring of brain function in vivo: from neurons to networks. Pflügers Archiv 453(3), 385–396 (2006)

    Article  Google Scholar 

  281. W. Göbel, F. Helmchen, In vivo calcium imaging of neural network function. Physiology 22(6), 358–365 (2007)

    Article  Google Scholar 

  282. W. Yang, R. Yuste, In vivo imaging of neural activity. Nat. Methods 14(4), 349–359 (2017)

    Article  Google Scholar 

  283. R. David, Milestone 16: Light sheet microscopy: Seeing the light, perpendicularly. Nature (1993). https://doi.org/10.1038/ncb1951

  284. F. Pampaloni, B.J. Chang, E.H. Stelzer, Light sheet-based fluorescence microscopy (LSFM) for the quantitative imaging of cells and tissues. Cell Tissue Res. 360(1), 129–141 (2015)

    Article  Google Scholar 

  285. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E.H. Stelzer, Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686), 1007–1009 (2004)

    Article  Google Scholar 

  286. M.W. Adams, A.F. Loftus, S.E. Dunn, M.S. Joens, J.A. Fitzpatrick, Light sheet fluorescence microscopy (LSFM). Curr. Protoc. Cytom. 71, 12–37 (2015)

    Google Scholar 

  287. H. Siedentopf, R. Zsigmondy, Uber sichtbarmachung und größenbestimmung ultramikoskopischer teilchen, mit besonderer anwendung auf goldrubingläser. Ann. Phys. 315(1), 1–39 (1902)

    Article  Google Scholar 

  288. H.G. Söderbaum, Award ceremony speech. Nobelprize.org (1926). http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1925/press.html

  289. A.H. Voie, D.H. Burns, F.A. Spelman, Orthogonal-plane fluorescence optical sectioning: Three-dimensional imaging of macroscopic biological specimens. J. Microsc. 170(3), 229–236 (1993)

    Article  Google Scholar 

  290. S. Lindek, R. Pick, E.H. Stelzer, Confocal theta microscope with three objective lenses. Rev. Sci. Instrum. 65(11), 3367–3372 (1994)

    Article  Google Scholar 

  291. P.A. Santi, S.B. Johnson, M. Hillenbrand, P.Z. GrandPre, T.J. Glass, J.R. Leger, Thin-sheet laser imaging microscopy for optical sectioning of thick tissues. Biotechniques 46(4), 287 (2009)

    Article  Google Scholar 

  292. C.J. Engelbrecht, E.H. Stelzer, Resolution enhancement in a light-sheet-based microscope (SPIM). Opt. Lett. 31(10), 1477–1479 (2006)

    Article  Google Scholar 

  293. P. Hoyer et al., Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT. PNAS 113(13), 3442–3446 (2016)

    Article  Google Scholar 

  294. R.M. Power, J. Huisken, A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods 14(4), 360–373 (2017)

    Article  Google Scholar 

  295. T.A. Planchon et al., Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8(5), 417–423 (2011)

    Article  Google Scholar 

  296. M. Zhao et al., Cellular imaging of deep organ using two-photon Bessel light-sheet nonlinear structured illumination microscopy. Biomed. Opt. Express 5(5), 1296–1308 (2014)

    Article  Google Scholar 

  297. F.C. Zanacchi et al., Live-cell 3D super-resolution imaging in thick biological samples. Nat. Methods 8(12), 1047–1049 (2011)

    Article  Google Scholar 

  298. F.C. Zanacchi, Z. Lavagnino, M. Faretta, L. Furia, A. Diaspro, Light-sheet confined super-resolution using two-photon photoactivation. PLoS ONE 8(7), e67667 (2013)

    Article  Google Scholar 

  299. Y.S. Hu et al., Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells. Optical nanoscopy 2(1), 7 (2013)

    Article  Google Scholar 

  300. A. Narasimhan, K.U. Venkataraju, J. Mizrachi, D.F. Albeanu, P. Osten, A high resolution whole brain imaging using Oblique Light Sheet Tomography (2017). https://doi.org/10.1101/132423

  301. P.J. Keller, M.B. Ahrens, J. Freeman, Light-sheet imaging for systems neuroscience. Nat. Methods 12(1), 27–29 (2015)

    Article  Google Scholar 

  302. L.A. Royer et al., Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nat. Biotech. 34(12), 1267–1278 (2016)

    Article  Google Scholar 

  303. R.K. Chhetri, F. Amat, Y. Wan, B.I.L. Höckendorf, W.C. Lemon, P.J. Keller, Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat. Methods 12(12), 1171–1178 (2015)

    Article  Google Scholar 

  304. H.U. Dodt et al., Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4(4), 331–336 (2007)

    Article  Google Scholar 

  305. M. Stefaniuk et al., Light-sheet microscopy imaging of a whole cleared rat brain with Thy1-GFP transgene. Sci. Rep. 6, 28209 (2016)

    Article  Google Scholar 

  306. S. Wolf et al., Whole-brain functional imaging with two-photon light-sheet microscopy. Nat. Methods 12(5), 379–380 (2015)

    Article  Google Scholar 

  307. L. Silvestri et al., Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis. Front. Neuroanat. 9, 68 (2015)

    Article  Google Scholar 

  308. W. Li et al., in Optics and the Brain (Optical Society of America, 2016), pp. BTu4D-3

    Google Scholar 

  309. S.W. Emmons, The beginning of connectomics: a commentary on White et al. (1986) ‘The structure of the nervous system of the nematode Caenorhabditis elegans’. Phil. Trans. R. Soc. B 370(1666), 20140309 (2015)

    Google Scholar 

  310. F. Jabr, The connectome debate: is mapping the mind of a worm worth it. Sci. Am. (2012)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Ministry of Science and Technology (MOST), Taiwan, and University Grants Commission (UGC), India, for their support to the biophotonics research projects at NYMU and JBC (UGC Grant No. F.5-376/2014-15/MRP/NERO/2181).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ankur Gogoi or Fu-Jen Kao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gogoi, A., Keiser, G., Kao, FJ., Chiang, AS. (2019). Multiscale and Multimodal Imaging for Connectomics. In: Kao, FJ., Keiser, G., Gogoi, A. (eds) Advanced Optical Methods for Brain Imaging. Progress in Optical Science and Photonics, vol 5. Springer, Singapore. https://doi.org/10.1007/978-981-10-9020-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-9020-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-9019-6

  • Online ISBN: 978-981-10-9020-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics