Skip to main content

Bioactive Compounds from Endophytic Fungi

  • Chapter
  • First Online:
Fungi and their Role in Sustainable Development: Current Perspectives

Abstract

Endophytic fungi are highly potential for the production of pharmaceutically valuable compounds such as anticancer, antioxidant, antimicrobial, antidiabetic and industrial enzymes, etc. Today human faces a lot of challenges for existence due to the appearance of new diseases, infections, drug resistances and imbalances in the ecosystems. Here endophytes were the potential sources for the new remedies. Endophytes are contemplated as a treasury for bioprospecting, and they assist in many forms to conquer many complications. Among the various endophytic microbes, fungi have been found most potential microorganisms which are a reservoir of largely untapped bioactive metabolites. In the future we need to seek for endophytes for their bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adbessamad D, Aly Amal H, Edrada-Ebel RA, Mueller WEG, Mosaddak M, Hakikj A, Ebel R, Proksch P (2009) Bioactive secondary metabolites from the endophytic fungus Chaetomium sp. isolated from Salvia officinalis growing in Morocco. Biotechnol Agron Soc Environ (BASE) 13(2):229–234

    Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites: a personal view. J Antibiot 58:1–26

    Article  Google Scholar 

  • Bharathidasan R, Panneerselvam A (2013) Diversity and biotechnological application of endophytic fungi from mangrove plants of Karankadu, Ramanathapuram district, Tamil Nadu, India. Ph.D thesis, Refer to Bharathidasan University, Trichy

    Google Scholar 

  • Chen L, Chen J, Zheng X, Zhang J, Yu X (2007) Identification and antifungal activity of the metabolite of endophytic fungi isolated from Ilex cornuta. Nongyaoxue Xuebao 9:143–150

    CAS  Google Scholar 

  • Cheng Z-s, Pan J-H, Wen-cheng T, Qi-jin C, Lin Y-c (2009) Biodiversity and biotechnological potential of mangrove – associated fungi. J For Res 20(1):63–72

    Article  CAS  Google Scholar 

  • Christophersen C, Crescente O, Frisvad JC, Gram L, Nielsen J, Nielsen PH, Rahbaek L (1999) Antibacterial activity of marine – derived fungi. Mycopathologia 143:135–138

    Article  CAS  Google Scholar 

  • Dayle ES, Polans NO, Paul DS, Melvin RD (2001) Angiosperm DNA contamination by endophytic fungi: detection and methods of avoidance. Plant Mole Biol Rep 19:249–260

    Article  Google Scholar 

  • De Souza JJ, Vieira IJ, Rodrigues-Filho E, Braz-Filho R (2011) Terpenoids from endophytic fungi. Mol Ther 16:10604–10618

    Google Scholar 

  • Dreyfuss MM (1986) Neue Erkienntnisse aus einem pharmakologischen Pilzscreening. Sydowia 39:22–36

    Google Scholar 

  • Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low molecular weight pharmaceuticals. In: Gullo VP (ed) The discovery of natural products with therapeutic potential. Butterworth-Heinemann, Boston, pp 49–80

    Chapter  Google Scholar 

  • Firakova S, Sturdikova M, Muckova M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62/3:251–257

    Google Scholar 

  • Frohlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palm. Mycol Res 104:1202–1212

    Article  Google Scholar 

  • Garo E, Starks CM, Jensen PR, Fenical W, Lobkovsky E, Clardy J (2003) Trichodermamides A and B, cytotoxic modified dipeptides from the marine – derived fungus Trichoderma virens. J Nat Prod 66:423–426

    Article  PubMed  CAS  Google Scholar 

  • Ghisalberti E, Rowland CJ (1993) Antifungal metabolites from Trichoderma harzianum. Nat Prod 56:1799

    Article  CAS  Google Scholar 

  • Giridharan P, Verekar SA, Khanna A, Mishra PD, Deshmukh SK (2012) Anticancer activity of sclerotiorin, isolated from an endophytic fungus Cephalotheca faveolata Yaguchi, Nishim. & Udagawa. Indian J Exp Biol 50(7):464–468

    PubMed  CAS  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo B, Li H, Zhang L (1998) Isolation of the fungus producing vinblastine. J Yunnan Univ (Nat Sci Ed) 20:214–215

    CAS  Google Scholar 

  • Henson RNA, Rugg MD, Shallice T, Josephs O, Dolan RJ (1999) Recollection and familiarity in recognition memory: an event related functional magnetic resonance imaging study. J Neurosci 19(10):3962–3972

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang WY, Cai YZ, Xing J, Corke H, Sun M (2007) Potential antioxidant resource: endophytic fungi isolated from traditional Chinese medicinal plants. Econ Bot 61:14–30

    Article  CAS  Google Scholar 

  • Humberto H, Lara V, Ayala-Nunez NV, Carmen LD, Ixtepan T, Cristina RP (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26:615–621

    Article  CAS  Google Scholar 

  • Imtiaj A, Lee T-S (2007) Screening of antibacterial and antifungal activities from Korean wild mushrooms. World J Agric Sci 3:316–321

    Google Scholar 

  • Isaka M, Suryansestakorn C, Tanticharoen M (2002) Aigialomycins A–E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J Organomet Chem 67:1561–1566

    Article  CAS  Google Scholar 

  • Kaushal Kanwer S, Rao DV, Batra A (2013) In vitro antimicrobial activities of endophytic fungi isolates medicinal tree – Melia azedarach L. J Microbiol Res 3(1):19–24

    Google Scholar 

  • Kusari S, Zuhlke S, Spiteller M (2009a) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7

    Article  PubMed  CAS  Google Scholar 

  • Kusari S, Lamshoft M, Spiteller M (2009b) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer prodrug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Li MY, Xiao Q, Pan JY, Wu J (2009) Natural products from semi-mangrove flora: source, chemistry and bioactivities. Nat Prod Rep 26(2):281–298

    Article  PubMed  Google Scholar 

  • Lin YC, Zhou SN (2003) Marine microorganisms and its metabolites. Chemical Industry Press, Beijing, pp 426–427

    Google Scholar 

  • Liu K, Ding X, Deng B, Chen W (2009) Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind Microbiol Biotechnol 36:1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Lodge D, Fisher PG, Sutton BC (1996) Endophytic fungi of Manilkara bidentata in fruticose lichens. Mycologia 82:444–451

    Google Scholar 

  • Logesh AR, Thillaimaharani KA, Sharmila K, Kalaiselvam M, Raffi SM (2012) Production of chitosan from endolichenic fungi isolated from mangrove environment and its antagonistic activity. Asian Pac J Trop Biomed 2(2):140–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma YM, Li Y, Liu JY, Song YC, Tan RX (2004) Anti-Helicobacter pylori metabolites from Rhizoctonia sp. Cy064, an endophytic fungus in Cynodon dactylon. Fitoterapia 75:451–456

    Article  PubMed  CAS  Google Scholar 

  • Marquez S, Bills GF, Zabalgogeazcoa I (2007) The endophytic mycobiota of the grass Dactylis glomerata. Fungal Divers 27:171–195

    Google Scholar 

  • Mekawey AAI (2010) The antibiotic properties of several strains of fungi. Aust J Basic Appl Sci 4:3441–3454

    CAS  Google Scholar 

  • Min C, Wang X (2009) Isolation and identification of the 10-hydroxycamptothecin-producing endophytic fungi from Camptotheca acuminata Decne. Acta Botan Boreali-Occiden Sin 29:0614–0617

    CAS  Google Scholar 

  • Mitchell AM, Strobel GA, Hess WM, Vargas PN, Ezra D (2008) Muscodor crispans, a novel endophyte from Ananas ananasoides in the Bolivian Amazon. Fungal Divers 31:37–43

    Google Scholar 

  • Moricca S, Ragazzi A (2008) Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Phytopathology 98:380–386

    Article  PubMed  CAS  Google Scholar 

  • Pela’ez F (2005) Biological activities of fungal metabolites. In: An Z (ed) Handbook of industrial mycology. Marcel Dekker, New York, pp 49–92

    Google Scholar 

  • Pelaez F, Collado J, Arenal F, Basilio A, Cabello A, Diez Matas MT, Garcia B, Gonzalez Del Val A, Gonzalez V, Gorrochategui J, Hernandez P, Martin I, Platas G, Vicente F (1998) Endophytic fungi from plants living on gypsum soils as a source of secondary metabolites with antimicrobial activity. Mycol Res 102(6):755–761

    Article  Google Scholar 

  • Petrini LE, Petrini O (1985) Xylariaceous fungi as endophytes. Sydowia 38:216–234

    Google Scholar 

  • Petrini A, Hake U, Dreyfuss M (1990) An analysis of fungal communities isolated from fruticose lichens. Mycologia 82:444–451

    Article  Google Scholar 

  • Poch GK, Gloer JB (1991) Auranticins A and B: two depsidones from a mangrove isolate of the fungus Preussia aurantiaca. J Nat Prod 54:213–217

    Article  PubMed  CAS  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  PubMed  CAS  Google Scholar 

  • Prabavathy D, Valli NC (2013) Antimicrobial and antidiabetic activity of an endophytic fungi isolated from Adathoda beddomei. Int J Pharm Pharm Sci 5:780–783

    Google Scholar 

  • Pruksakorn P, Arai M, Kotoku N, Vilcheze C, Baughn AD, Moodley P, Jacobs WR, Kobayashi M (2010) Tricoderins, novel aminolipopeptiides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 20(12):3658–3663

    Google Scholar 

  • Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Abdin MZ, Hassan UI, S.R. (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the western Himalayas. Springer Plus 2(8):2–14

    Google Scholar 

  • Schultz B, Sucker J, Aust HJ, Krohn K, Ludewig K, Jones PG, Doring D (1995) Biologically active secondary metabolites of Pezicula species. Itlycol Res 99:1007–1015

    Google Scholar 

  • Schulz B, Boyle C, Draeger S, Rommert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Schulz B, Draeger S, dela Cruz TE, Rheinheimer J, Siems K, Loesgen S, Bitzer J, Schloerke O, Zeeck A, Kock I, Hussain H, Dai J, Krohn K (2008) Screening strategies for obtaining novel, biologically active, fungal secondary metabolites from marine habitats. Bot Mar 51:219–234

    Article  CAS  Google Scholar 

  • Shweta S, Zuehlke S, Ramesha BT, Priti V, Mohanakumar P, Ravikanth G, Spiteller M (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey.ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71(1):117–122

    Google Scholar 

  • Silva MRO, Almeida AC, Arruda FVF, Gusmao N (2011) Endophytic fungi from Brazilian mangrove plant Laguncularia racemosa (L.) Gaertn. (Combretaceae): their antimicrobial potential. Sci Against Microb Pathog: Commun Curr Res Technol Adv 2:1260–1266

    Google Scholar 

  • Simon A, Dunlop RW, Ghulsalberti EL, Silvsithamparam K (1988) Trichoderma koningii produces a pyrone compound with antibiotic properties. Soil Biol Biochem 20:263

    Article  CAS  Google Scholar 

  • Stierle A, Strobel GA, Stierle DB (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  PubMed  CAS  Google Scholar 

  • Strobel G (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mole Biol 67(4):491–502

    Article  CAS  Google Scholar 

  • Strobel G, Hess WM, Li JY, Ford E, Sears J, Sidhu RS, Summerell B (1997) Pestalotiopsis guepinii, a taxol producing endophyte of the Wollemi Pine, Wollemia nobilis. Aust J Bot 45:1073–1082

    Article  CAS  Google Scholar 

  • Suryanarayanan TS, Murali TS (2006) Incidence of Leptosphaerulina crassiasca in symptomLess leaves of peanut in southern India. J Basic Microbiol 46:305–309

    Article  PubMed  Google Scholar 

  • Suryanarayanan TS, Thennarasan S (2004) Temporal variation in endophyte assemblages of Plumeria rubra leaves. Fungal Divers 15:197–204

    Google Scholar 

  • Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Can J Microbiol 44:1003–1006

    Article  CAS  Google Scholar 

  • Suryanarayanan TS, Senthilarasu G, Muruganandam V (2000) Endophytic fungi from Cuscuta reflexa and its host plants. Fungal Divers 4:117–123

    Google Scholar 

  • Takahashi JA, Monteiro de Castro MC, Souza GG, Lucas EMF, Bracarense AAP, Abreu LM, Marriel IE, Oliveira MS, Floreano MB, Oliveira TS (2008) Isolation and screening of fungal species isolated from Brazilian cerrado soil for antibacterial activity against Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Streptococcus pyogenes and Listeria monocytogenes. J Mycol Méd 18:198–204

    Article  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  PubMed  CAS  Google Scholar 

  • Umali TE, Quimio TH, Hyde KD (1999) Endophytic fungi in leaves of Bambusa tuldoides. Fungal Sci 14:11–18

    Google Scholar 

  • Vicente MF, Cabello A, Platas G, Basilio A, Díez MT, Dreikorn S, Giacobbe RA, Onishi JC, Meinz M, Kurtz MB, Rosenbach M, Thompson J, Abruzzo G, Flattery A, Kong L, Tsipouras A, Wilson KE, Peláez F (2011) Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum. J Appl Microbiol 91(5):806–813

    Article  Google Scholar 

  • Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:706–711

    Google Scholar 

  • Vogl A (1898) Mehl und die anderen mehl produkte der cerealien und leguminosen. Zeitschrift Nahrungsmittle untersuchung, Hgg. Warlenkunde 21:25–29

    Google Scholar 

  • Wang FW, Hon ZM, Wang CR, Li P, Shi DH (2008) Bioactive metabolites from Penicillium sp., and endophytic fungi residing in Hopea hainanensis. World J Biotechnol 24:2143–2147

    Article  CAS  Google Scholar 

  • White F Jr, Drake TE, Martin N (1996) Endophyte host associations in grasses. XXIII. A study of two species of Balansia that form stromata on nodes of grasses. Mycologia 88:89–97

    Article  Google Scholar 

  • Wu B, Oesker V, Wiese J, Schmalijohann R, Imhoff JF (2014) Two new antibiotic pyridines produced by a marine fungus, Trichoderma sp. Strain MF106. Mar Drugs 12:1208–1219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin H, Sun YH (2011) Vincamine-producing endophytic fungus isolated from Vinca minor. Phytomedicine 18:802–805

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Guo B, Li H, Zeng S, Shao H, Gu S, Wei R (2000) Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chin Tradit Herb Drug 31:805–807

    CAS  Google Scholar 

  • Zhang Y, Han T, Ming Q, Wu L, Rahman K, Qin L (2012) Alkaloids produced by endophytic fungi: a review. Nat Prod Commun 7(7):963–968

    PubMed  CAS  Google Scholar 

  • Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. Curr Res Technol Educat Top Appl Microbiol Microbial Biotechnol 1:567–576

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selvakumar, V., Panneerselvam, A. (2018). Bioactive Compounds from Endophytic Fungi. In: Gehlot, P., Singh, J. (eds) Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_36

Download citation

Publish with us

Policies and ethics